| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( x = A -> ( x *e B ) = ( A *e B ) ) |
| 2 |
1
|
oveq1d |
|- ( x = A -> ( ( x *e B ) *e C ) = ( ( A *e B ) *e C ) ) |
| 3 |
|
oveq1 |
|- ( x = A -> ( x *e ( B *e C ) ) = ( A *e ( B *e C ) ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( x = A -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) ) |
| 5 |
|
oveq1 |
|- ( x = -e A -> ( x *e B ) = ( -e A *e B ) ) |
| 6 |
5
|
oveq1d |
|- ( x = -e A -> ( ( x *e B ) *e C ) = ( ( -e A *e B ) *e C ) ) |
| 7 |
|
oveq1 |
|- ( x = -e A -> ( x *e ( B *e C ) ) = ( -e A *e ( B *e C ) ) ) |
| 8 |
6 7
|
eqeq12d |
|- ( x = -e A -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( -e A *e B ) *e C ) = ( -e A *e ( B *e C ) ) ) ) |
| 9 |
|
xmulcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
| 10 |
|
xmulcl |
|- ( ( ( A *e B ) e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) e. RR* ) |
| 11 |
9 10
|
stoic3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) e. RR* ) |
| 12 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> A e. RR* ) |
| 13 |
|
xmulcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 14 |
13
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 15 |
|
xmulcl |
|- ( ( A e. RR* /\ ( B *e C ) e. RR* ) -> ( A *e ( B *e C ) ) e. RR* ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A *e ( B *e C ) ) e. RR* ) |
| 17 |
|
oveq2 |
|- ( y = B -> ( x *e y ) = ( x *e B ) ) |
| 18 |
17
|
oveq1d |
|- ( y = B -> ( ( x *e y ) *e C ) = ( ( x *e B ) *e C ) ) |
| 19 |
|
oveq1 |
|- ( y = B -> ( y *e C ) = ( B *e C ) ) |
| 20 |
19
|
oveq2d |
|- ( y = B -> ( x *e ( y *e C ) ) = ( x *e ( B *e C ) ) ) |
| 21 |
18 20
|
eqeq12d |
|- ( y = B -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) ) |
| 22 |
|
oveq2 |
|- ( y = -e B -> ( x *e y ) = ( x *e -e B ) ) |
| 23 |
22
|
oveq1d |
|- ( y = -e B -> ( ( x *e y ) *e C ) = ( ( x *e -e B ) *e C ) ) |
| 24 |
|
oveq1 |
|- ( y = -e B -> ( y *e C ) = ( -e B *e C ) ) |
| 25 |
24
|
oveq2d |
|- ( y = -e B -> ( x *e ( y *e C ) ) = ( x *e ( -e B *e C ) ) ) |
| 26 |
23 25
|
eqeq12d |
|- ( y = -e B -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e -e B ) *e C ) = ( x *e ( -e B *e C ) ) ) ) |
| 27 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> x e. RR* ) |
| 28 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> B e. RR* ) |
| 29 |
|
xmulcl |
|- ( ( x e. RR* /\ B e. RR* ) -> ( x *e B ) e. RR* ) |
| 30 |
27 28 29
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e B ) e. RR* ) |
| 31 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> C e. RR* ) |
| 32 |
|
xmulcl |
|- ( ( ( x *e B ) e. RR* /\ C e. RR* ) -> ( ( x *e B ) *e C ) e. RR* ) |
| 33 |
30 31 32
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e B ) *e C ) e. RR* ) |
| 34 |
14
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( B *e C ) e. RR* ) |
| 35 |
|
xmulcl |
|- ( ( x e. RR* /\ ( B *e C ) e. RR* ) -> ( x *e ( B *e C ) ) e. RR* ) |
| 36 |
27 34 35
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( B *e C ) ) e. RR* ) |
| 37 |
|
oveq2 |
|- ( z = C -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e C ) ) |
| 38 |
|
oveq2 |
|- ( z = C -> ( y *e z ) = ( y *e C ) ) |
| 39 |
38
|
oveq2d |
|- ( z = C -> ( x *e ( y *e z ) ) = ( x *e ( y *e C ) ) ) |
| 40 |
37 39
|
eqeq12d |
|- ( z = C -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) ) |
| 41 |
|
oveq2 |
|- ( z = -e C -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e -e C ) ) |
| 42 |
|
oveq2 |
|- ( z = -e C -> ( y *e z ) = ( y *e -e C ) ) |
| 43 |
42
|
oveq2d |
|- ( z = -e C -> ( x *e ( y *e z ) ) = ( x *e ( y *e -e C ) ) ) |
| 44 |
41 43
|
eqeq12d |
|- ( z = -e C -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e -e C ) = ( x *e ( y *e -e C ) ) ) ) |
| 45 |
27
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> x e. RR* ) |
| 46 |
|
simprl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> y e. RR* ) |
| 47 |
|
xmulcl |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
| 48 |
45 46 47
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e y ) e. RR* ) |
| 49 |
31
|
adantr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> C e. RR* ) |
| 50 |
|
xmulcl |
|- ( ( ( x *e y ) e. RR* /\ C e. RR* ) -> ( ( x *e y ) *e C ) e. RR* ) |
| 51 |
48 49 50
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e C ) e. RR* ) |
| 52 |
|
xmulcl |
|- ( ( y e. RR* /\ C e. RR* ) -> ( y *e C ) e. RR* ) |
| 53 |
46 49 52
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e C ) e. RR* ) |
| 54 |
|
xmulcl |
|- ( ( x e. RR* /\ ( y *e C ) e. RR* ) -> ( x *e ( y *e C ) ) e. RR* ) |
| 55 |
45 53 54
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e C ) ) e. RR* ) |
| 56 |
|
xmulasslem3 |
|- ( ( ( x e. RR* /\ 0 < x ) /\ ( y e. RR* /\ 0 < y ) /\ ( z e. RR* /\ 0 < z ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
| 57 |
56
|
ad4ant234 |
|- ( ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) /\ ( z e. RR* /\ 0 < z ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
| 58 |
|
xmul01 |
|- ( ( x *e y ) e. RR* -> ( ( x *e y ) *e 0 ) = 0 ) |
| 59 |
48 58
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = 0 ) |
| 60 |
|
xmul01 |
|- ( x e. RR* -> ( x *e 0 ) = 0 ) |
| 61 |
45 60
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e 0 ) = 0 ) |
| 62 |
59 61
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = ( x *e 0 ) ) |
| 63 |
|
xmul01 |
|- ( y e. RR* -> ( y *e 0 ) = 0 ) |
| 64 |
63
|
ad2antrl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e 0 ) = 0 ) |
| 65 |
64
|
oveq2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e 0 ) ) = ( x *e 0 ) ) |
| 66 |
62 65
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e 0 ) = ( x *e ( y *e 0 ) ) ) |
| 67 |
|
oveq2 |
|- ( z = 0 -> ( ( x *e y ) *e z ) = ( ( x *e y ) *e 0 ) ) |
| 68 |
|
oveq2 |
|- ( z = 0 -> ( y *e z ) = ( y *e 0 ) ) |
| 69 |
68
|
oveq2d |
|- ( z = 0 -> ( x *e ( y *e z ) ) = ( x *e ( y *e 0 ) ) ) |
| 70 |
67 69
|
eqeq12d |
|- ( z = 0 -> ( ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) <-> ( ( x *e y ) *e 0 ) = ( x *e ( y *e 0 ) ) ) ) |
| 71 |
66 70
|
syl5ibrcom |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( z = 0 -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) ) |
| 72 |
|
xmulneg2 |
|- ( ( ( x *e y ) e. RR* /\ C e. RR* ) -> ( ( x *e y ) *e -e C ) = -e ( ( x *e y ) *e C ) ) |
| 73 |
48 49 72
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e -e C ) = -e ( ( x *e y ) *e C ) ) |
| 74 |
|
xmulneg2 |
|- ( ( y e. RR* /\ C e. RR* ) -> ( y *e -e C ) = -e ( y *e C ) ) |
| 75 |
46 49 74
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( y *e -e C ) = -e ( y *e C ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e -e C ) ) = ( x *e -e ( y *e C ) ) ) |
| 77 |
|
xmulneg2 |
|- ( ( x e. RR* /\ ( y *e C ) e. RR* ) -> ( x *e -e ( y *e C ) ) = -e ( x *e ( y *e C ) ) ) |
| 78 |
45 53 77
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e -e ( y *e C ) ) = -e ( x *e ( y *e C ) ) ) |
| 79 |
76 78
|
eqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( x *e ( y *e -e C ) ) = -e ( x *e ( y *e C ) ) ) |
| 80 |
40 44 51 55 49 57 71 73 79
|
xmulasslem |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) /\ ( y e. RR* /\ 0 < y ) ) -> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) |
| 81 |
|
xmul02 |
|- ( C e. RR* -> ( 0 *e C ) = 0 ) |
| 82 |
81
|
3ad2ant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e C ) = 0 ) |
| 83 |
82
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( 0 *e C ) = 0 ) |
| 84 |
60
|
ad2antrl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e 0 ) = 0 ) |
| 85 |
83 84
|
eqtr4d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( 0 *e C ) = ( x *e 0 ) ) |
| 86 |
84
|
oveq1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e 0 ) *e C ) = ( 0 *e C ) ) |
| 87 |
83
|
oveq2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( 0 *e C ) ) = ( x *e 0 ) ) |
| 88 |
85 86 87
|
3eqtr4d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e 0 ) *e C ) = ( x *e ( 0 *e C ) ) ) |
| 89 |
|
oveq2 |
|- ( y = 0 -> ( x *e y ) = ( x *e 0 ) ) |
| 90 |
89
|
oveq1d |
|- ( y = 0 -> ( ( x *e y ) *e C ) = ( ( x *e 0 ) *e C ) ) |
| 91 |
|
oveq1 |
|- ( y = 0 -> ( y *e C ) = ( 0 *e C ) ) |
| 92 |
91
|
oveq2d |
|- ( y = 0 -> ( x *e ( y *e C ) ) = ( x *e ( 0 *e C ) ) ) |
| 93 |
90 92
|
eqeq12d |
|- ( y = 0 -> ( ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) <-> ( ( x *e 0 ) *e C ) = ( x *e ( 0 *e C ) ) ) ) |
| 94 |
88 93
|
syl5ibrcom |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( y = 0 -> ( ( x *e y ) *e C ) = ( x *e ( y *e C ) ) ) ) |
| 95 |
|
xmulneg2 |
|- ( ( x e. RR* /\ B e. RR* ) -> ( x *e -e B ) = -e ( x *e B ) ) |
| 96 |
27 28 95
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e -e B ) = -e ( x *e B ) ) |
| 97 |
96
|
oveq1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e -e B ) *e C ) = ( -e ( x *e B ) *e C ) ) |
| 98 |
|
xmulneg1 |
|- ( ( ( x *e B ) e. RR* /\ C e. RR* ) -> ( -e ( x *e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
| 99 |
30 31 98
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( -e ( x *e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
| 100 |
97 99
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e -e B ) *e C ) = -e ( ( x *e B ) *e C ) ) |
| 101 |
|
xmulneg1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( -e B *e C ) = -e ( B *e C ) ) |
| 102 |
28 31 101
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( -e B *e C ) = -e ( B *e C ) ) |
| 103 |
102
|
oveq2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( -e B *e C ) ) = ( x *e -e ( B *e C ) ) ) |
| 104 |
|
xmulneg2 |
|- ( ( x e. RR* /\ ( B *e C ) e. RR* ) -> ( x *e -e ( B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
| 105 |
27 34 104
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e -e ( B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
| 106 |
103 105
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( x *e ( -e B *e C ) ) = -e ( x *e ( B *e C ) ) ) |
| 107 |
21 26 33 36 28 80 94 100 106
|
xmulasslem |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. RR* /\ 0 < x ) ) -> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) |
| 108 |
|
xmul02 |
|- ( B e. RR* -> ( 0 *e B ) = 0 ) |
| 109 |
108
|
3ad2ant2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e B ) = 0 ) |
| 110 |
109
|
oveq1d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( 0 *e B ) *e C ) = ( 0 *e C ) ) |
| 111 |
|
xmul02 |
|- ( ( B *e C ) e. RR* -> ( 0 *e ( B *e C ) ) = 0 ) |
| 112 |
14 111
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( 0 *e ( B *e C ) ) = 0 ) |
| 113 |
82 110 112
|
3eqtr4d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( 0 *e B ) *e C ) = ( 0 *e ( B *e C ) ) ) |
| 114 |
|
oveq1 |
|- ( x = 0 -> ( x *e B ) = ( 0 *e B ) ) |
| 115 |
114
|
oveq1d |
|- ( x = 0 -> ( ( x *e B ) *e C ) = ( ( 0 *e B ) *e C ) ) |
| 116 |
|
oveq1 |
|- ( x = 0 -> ( x *e ( B *e C ) ) = ( 0 *e ( B *e C ) ) ) |
| 117 |
115 116
|
eqeq12d |
|- ( x = 0 -> ( ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) <-> ( ( 0 *e B ) *e C ) = ( 0 *e ( B *e C ) ) ) ) |
| 118 |
113 117
|
syl5ibrcom |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x = 0 -> ( ( x *e B ) *e C ) = ( x *e ( B *e C ) ) ) ) |
| 119 |
|
xmulneg1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 120 |
119
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |
| 121 |
120
|
oveq1d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( -e A *e B ) *e C ) = ( -e ( A *e B ) *e C ) ) |
| 122 |
|
xmulneg1 |
|- ( ( ( A *e B ) e. RR* /\ C e. RR* ) -> ( -e ( A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
| 123 |
9 122
|
stoic3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e ( A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
| 124 |
121 123
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( -e A *e B ) *e C ) = -e ( ( A *e B ) *e C ) ) |
| 125 |
|
xmulneg1 |
|- ( ( A e. RR* /\ ( B *e C ) e. RR* ) -> ( -e A *e ( B *e C ) ) = -e ( A *e ( B *e C ) ) ) |
| 126 |
12 14 125
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -e A *e ( B *e C ) ) = -e ( A *e ( B *e C ) ) ) |
| 127 |
4 8 11 16 12 107 118 124 126
|
xmulasslem |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |