Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xmulasslem2 | |- ( ( 0 < A /\ A = -oo ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( A = -oo -> ( 0 < A <-> 0 < -oo ) ) |
|
2 | 0xr | |- 0 e. RR* |
|
3 | nltmnf | |- ( 0 e. RR* -> -. 0 < -oo ) |
|
4 | 2 3 | ax-mp | |- -. 0 < -oo |
5 | 4 | pm2.21i | |- ( 0 < -oo -> ph ) |
6 | 1 5 | syl6bi | |- ( A = -oo -> ( 0 < A -> ph ) ) |
7 | 6 | impcom | |- ( ( 0 < A /\ A = -oo ) -> ph ) |