Metamath Proof Explorer


Theorem xmulasslem2

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulasslem2
|- ( ( 0 < A /\ A = -oo ) -> ph )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( A = -oo -> ( 0 < A <-> 0 < -oo ) )
2 0xr
 |-  0 e. RR*
3 nltmnf
 |-  ( 0 e. RR* -> -. 0 < -oo )
4 2 3 ax-mp
 |-  -. 0 < -oo
5 4 pm2.21i
 |-  ( 0 < -oo -> ph )
6 1 5 syl6bi
 |-  ( A = -oo -> ( 0 < A -> ph ) )
7 6 impcom
 |-  ( ( 0 < A /\ A = -oo ) -> ph )