Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
3 |
|
recn |
|- ( C e. RR -> C e. CC ) |
4 |
|
mulass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
6 |
5
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
7 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
8 |
|
rexmul |
|- ( ( ( A x. B ) e. RR /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( ( A x. B ) x. C ) ) |
9 |
7 8
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( ( A x. B ) x. C ) ) |
10 |
|
remulcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
11 |
|
rexmul |
|- ( ( A e. RR /\ ( B x. C ) e. RR ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
12 |
10 11
|
sylan2 |
|- ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
13 |
12
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
14 |
6 9 13
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( A *e ( B x. C ) ) ) |
15 |
|
rexmul |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
16 |
15
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e B ) = ( A x. B ) ) |
17 |
16
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( ( A x. B ) *e C ) ) |
18 |
|
rexmul |
|- ( ( B e. RR /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
19 |
18
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
20 |
19
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B *e C ) ) = ( A *e ( B x. C ) ) ) |
21 |
14 17 20
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
22 |
21
|
adantll |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
23 |
|
oveq2 |
|- ( C = +oo -> ( ( A *e B ) *e C ) = ( ( A *e B ) *e +oo ) ) |
24 |
|
simp1l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> A e. RR* ) |
25 |
|
simp2l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> B e. RR* ) |
26 |
|
xmulcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A *e B ) e. RR* ) |
28 |
|
xmulgt0 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |
29 |
28
|
3adant3 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( A *e B ) ) |
30 |
|
xmulpnf1 |
|- ( ( ( A *e B ) e. RR* /\ 0 < ( A *e B ) ) -> ( ( A *e B ) *e +oo ) = +oo ) |
31 |
27 29 30
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( ( A *e B ) *e +oo ) = +oo ) |
32 |
23 31
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = +oo ) |
33 |
|
simpl1 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A e. RR* /\ 0 < A ) ) |
34 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
35 |
33 34
|
syl |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A *e +oo ) = +oo ) |
36 |
32 35
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e +oo ) ) |
37 |
|
oveq2 |
|- ( C = +oo -> ( B *e C ) = ( B *e +oo ) ) |
38 |
|
xmulpnf1 |
|- ( ( B e. RR* /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
39 |
38
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B *e +oo ) = +oo ) |
40 |
37 39
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( B *e C ) = +oo ) |
41 |
40
|
oveq2d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A *e ( B *e C ) ) = ( A *e +oo ) ) |
42 |
36 41
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
43 |
42
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
44 |
|
simpl3r |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < C ) |
45 |
|
xmulasslem2 |
|- ( ( 0 < C /\ C = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
46 |
44 45
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
47 |
|
simp3l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> C e. RR* ) |
48 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
49 |
47 48
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
50 |
49
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
51 |
22 43 46 50
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
52 |
51
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
53 |
|
xmulpnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo ) |
54 |
53
|
3ad2ant3 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e C ) = +oo ) |
55 |
34
|
3ad2ant1 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A *e +oo ) = +oo ) |
56 |
54 55
|
eqtr4d |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e C ) = ( A *e +oo ) ) |
57 |
56
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( +oo *e C ) = ( A *e +oo ) ) |
58 |
|
oveq2 |
|- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
59 |
58 55
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
60 |
59
|
oveq1d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( +oo *e C ) ) |
61 |
|
oveq1 |
|- ( B = +oo -> ( B *e C ) = ( +oo *e C ) ) |
62 |
61 54
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( B *e C ) = +oo ) |
63 |
62
|
oveq2d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( A *e ( B *e C ) ) = ( A *e +oo ) ) |
64 |
57 60 63
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
65 |
64
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
66 |
|
simpl2r |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> 0 < B ) |
67 |
|
xmulasslem2 |
|- ( ( 0 < B /\ B = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
68 |
66 67
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
69 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
70 |
25 69
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
71 |
70
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
72 |
52 65 68 71
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
73 |
|
simpl3 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( C e. RR* /\ 0 < C ) ) |
74 |
73 53
|
syl |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( +oo *e C ) = +oo ) |
75 |
|
oveq1 |
|- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
76 |
|
xmulpnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
77 |
76
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e B ) = +oo ) |
78 |
75 77
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( A *e B ) = +oo ) |
79 |
78
|
oveq1d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( ( A *e B ) *e C ) = ( +oo *e C ) ) |
80 |
|
oveq1 |
|- ( A = +oo -> ( A *e ( B *e C ) ) = ( +oo *e ( B *e C ) ) ) |
81 |
|
xmulcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
82 |
25 47 81
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B *e C ) e. RR* ) |
83 |
|
xmulgt0 |
|- ( ( ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( B *e C ) ) |
84 |
83
|
3adant1 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( B *e C ) ) |
85 |
|
xmulpnf2 |
|- ( ( ( B *e C ) e. RR* /\ 0 < ( B *e C ) ) -> ( +oo *e ( B *e C ) ) = +oo ) |
86 |
82 84 85
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e ( B *e C ) ) = +oo ) |
87 |
80 86
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( A *e ( B *e C ) ) = +oo ) |
88 |
74 79 87
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
89 |
|
simp1r |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < A ) |
90 |
|
xmulasslem2 |
|- ( ( 0 < A /\ A = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
91 |
89 90
|
sylan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
92 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
93 |
24 92
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
94 |
72 88 91 93
|
mpjao3dan |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |