| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 3 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 4 |
|
mulass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| 5 |
1 2 3 4
|
syl3an |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| 6 |
5
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| 7 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 8 |
|
rexmul |
|- ( ( ( A x. B ) e. RR /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( ( A x. B ) x. C ) ) |
| 9 |
7 8
|
sylan |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( ( A x. B ) x. C ) ) |
| 10 |
|
remulcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
| 11 |
|
rexmul |
|- ( ( A e. RR /\ ( B x. C ) e. RR ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
| 12 |
10 11
|
sylan2 |
|- ( ( A e. RR /\ ( B e. RR /\ C e. RR ) ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
| 13 |
12
|
anassrs |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B x. C ) ) = ( A x. ( B x. C ) ) ) |
| 14 |
6 9 13
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A x. B ) *e C ) = ( A *e ( B x. C ) ) ) |
| 15 |
|
rexmul |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 16 |
15
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 17 |
16
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( ( A x. B ) *e C ) ) |
| 18 |
|
rexmul |
|- ( ( B e. RR /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
| 19 |
18
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( B *e C ) = ( B x. C ) ) |
| 20 |
19
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A *e ( B *e C ) ) = ( A *e ( B x. C ) ) ) |
| 21 |
14 17 20
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 22 |
21
|
adantll |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 23 |
|
oveq2 |
|- ( C = +oo -> ( ( A *e B ) *e C ) = ( ( A *e B ) *e +oo ) ) |
| 24 |
|
simp1l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> A e. RR* ) |
| 25 |
|
simp2l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> B e. RR* ) |
| 26 |
|
xmulcl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
| 27 |
24 25 26
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A *e B ) e. RR* ) |
| 28 |
|
xmulgt0 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |
| 29 |
28
|
3adant3 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( A *e B ) ) |
| 30 |
|
xmulpnf1 |
|- ( ( ( A *e B ) e. RR* /\ 0 < ( A *e B ) ) -> ( ( A *e B ) *e +oo ) = +oo ) |
| 31 |
27 29 30
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( ( A *e B ) *e +oo ) = +oo ) |
| 32 |
23 31
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = +oo ) |
| 33 |
|
simpl1 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A e. RR* /\ 0 < A ) ) |
| 34 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| 35 |
33 34
|
syl |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A *e +oo ) = +oo ) |
| 36 |
32 35
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e +oo ) ) |
| 37 |
|
oveq2 |
|- ( C = +oo -> ( B *e C ) = ( B *e +oo ) ) |
| 38 |
|
xmulpnf1 |
|- ( ( B e. RR* /\ 0 < B ) -> ( B *e +oo ) = +oo ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B *e +oo ) = +oo ) |
| 40 |
37 39
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( B *e C ) = +oo ) |
| 41 |
40
|
oveq2d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( A *e ( B *e C ) ) = ( A *e +oo ) ) |
| 42 |
36 41
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 43 |
42
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 44 |
|
simpl3r |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < C ) |
| 45 |
|
xmulasslem2 |
|- ( ( 0 < C /\ C = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 46 |
44 45
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) /\ C = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 47 |
|
simp3l |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> C e. RR* ) |
| 48 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 49 |
47 48
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 50 |
49
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 51 |
22 43 46 50
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 52 |
51
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 53 |
|
xmulpnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e C ) = +oo ) |
| 55 |
34
|
3ad2ant1 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A *e +oo ) = +oo ) |
| 56 |
54 55
|
eqtr4d |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e C ) = ( A *e +oo ) ) |
| 57 |
56
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( +oo *e C ) = ( A *e +oo ) ) |
| 58 |
|
oveq2 |
|- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
| 59 |
58 55
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
| 60 |
59
|
oveq1d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( +oo *e C ) ) |
| 61 |
|
oveq1 |
|- ( B = +oo -> ( B *e C ) = ( +oo *e C ) ) |
| 62 |
61 54
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( B *e C ) = +oo ) |
| 63 |
62
|
oveq2d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( A *e ( B *e C ) ) = ( A *e +oo ) ) |
| 64 |
57 60 63
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 65 |
64
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 66 |
|
simpl2r |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> 0 < B ) |
| 67 |
|
xmulasslem2 |
|- ( ( 0 < B /\ B = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 68 |
66 67
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) /\ B = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 69 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 70 |
25 69
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 72 |
52 65 68 71
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A e. RR ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 73 |
|
simpl3 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( C e. RR* /\ 0 < C ) ) |
| 74 |
73 53
|
syl |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( +oo *e C ) = +oo ) |
| 75 |
|
oveq1 |
|- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
| 76 |
|
xmulpnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
| 77 |
76
|
3ad2ant2 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e B ) = +oo ) |
| 78 |
75 77
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( A *e B ) = +oo ) |
| 79 |
78
|
oveq1d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( ( A *e B ) *e C ) = ( +oo *e C ) ) |
| 80 |
|
oveq1 |
|- ( A = +oo -> ( A *e ( B *e C ) ) = ( +oo *e ( B *e C ) ) ) |
| 81 |
|
xmulcl |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) e. RR* ) |
| 82 |
25 47 81
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( B *e C ) e. RR* ) |
| 83 |
|
xmulgt0 |
|- ( ( ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( B *e C ) ) |
| 84 |
83
|
3adant1 |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < ( B *e C ) ) |
| 85 |
|
xmulpnf2 |
|- ( ( ( B *e C ) e. RR* /\ 0 < ( B *e C ) ) -> ( +oo *e ( B *e C ) ) = +oo ) |
| 86 |
82 84 85
|
syl2anc |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( +oo *e ( B *e C ) ) = +oo ) |
| 87 |
80 86
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( A *e ( B *e C ) ) = +oo ) |
| 88 |
74 79 87
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = +oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 89 |
|
simp1r |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> 0 < A ) |
| 90 |
|
xmulasslem2 |
|- ( ( 0 < A /\ A = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 91 |
89 90
|
sylan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) /\ A = -oo ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |
| 92 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 93 |
24 92
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 94 |
72 88 91 93
|
mpjao3dan |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) /\ ( C e. RR* /\ 0 < C ) ) -> ( ( A *e B ) *e C ) = ( A *e ( B *e C ) ) ) |