Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xnegcld.1 | |- ( ph -> A e. RR* ) |
|
xaddcld.2 | |- ( ph -> B e. RR* ) |
||
Assertion | xmulcld | |- ( ph -> ( A *e B ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcld.1 | |- ( ph -> A e. RR* ) |
|
2 | xaddcld.2 | |- ( ph -> B e. RR* ) |
|
3 | xmulcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A *e B ) e. RR* ) |