Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
1
|
a1i |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ ( x = 0 \/ y = 0 ) ) -> 0 e. RR* ) |
3 |
|
pnfxr |
|- +oo e. RR* |
4 |
3
|
a1i |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) -> +oo e. RR* ) |
5 |
|
mnfxr |
|- -oo e. RR* |
6 |
5
|
a1i |
|- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> -oo e. RR* ) |
7 |
|
xmullem |
|- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> x e. RR ) |
8 |
|
ancom |
|- ( ( x e. RR* /\ y e. RR* ) <-> ( y e. RR* /\ x e. RR* ) ) |
9 |
|
orcom |
|- ( ( x = 0 \/ y = 0 ) <-> ( y = 0 \/ x = 0 ) ) |
10 |
9
|
notbii |
|- ( -. ( x = 0 \/ y = 0 ) <-> -. ( y = 0 \/ x = 0 ) ) |
11 |
8 10
|
anbi12i |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) <-> ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) ) |
12 |
|
orcom |
|- ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) <-> ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) |
13 |
12
|
notbii |
|- ( -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) <-> -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) |
14 |
11 13
|
anbi12i |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) <-> ( ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) /\ -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) ) |
15 |
|
orcom |
|- ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) <-> ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) |
16 |
15
|
notbii |
|- ( -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) <-> -. ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) |
17 |
|
xmullem |
|- ( ( ( ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) /\ -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) /\ -. ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) -> y e. RR ) |
18 |
14 16 17
|
syl2anb |
|- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> y e. RR ) |
19 |
7 18
|
remulcld |
|- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> ( x x. y ) e. RR ) |
20 |
19
|
rexrd |
|- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> ( x x. y ) e. RR* ) |
21 |
6 20
|
ifclda |
|- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) -> if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) e. RR* ) |
22 |
4 21
|
ifclda |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) -> if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) e. RR* ) |
23 |
2 22
|
ifclda |
|- ( ( x e. RR* /\ y e. RR* ) -> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* ) |
24 |
23
|
rgen2 |
|- A. x e. RR* A. y e. RR* if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* |
25 |
|
df-xmul |
|- *e = ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |
26 |
25
|
fmpo |
|- ( A. x e. RR* A. y e. RR* if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* <-> *e : ( RR* X. RR* ) --> RR* ) |
27 |
24 26
|
mpbi |
|- *e : ( RR* X. RR* ) --> RR* |