Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. RR* /\ 0 < A ) -> 0 < A ) |
2 |
|
simpr |
|- ( ( B e. RR* /\ 0 < B ) -> 0 < B ) |
3 |
1 2
|
anim12i |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( 0 < A /\ 0 < B ) ) |
4 |
|
mulgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
5 |
4
|
an4s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
6 |
5
|
ancoms |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A x. B ) ) |
7 |
|
rexmul |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
8 |
7
|
adantl |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e B ) = ( A x. B ) ) |
9 |
6 8
|
breqtrrd |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
10 |
3 9
|
sylan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
11 |
10
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B e. RR ) -> 0 < ( A *e B ) ) |
12 |
|
0ltpnf |
|- 0 < +oo |
13 |
|
oveq2 |
|- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
14 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
15 |
14
|
adantr |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A *e +oo ) = +oo ) |
16 |
13 15
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
17 |
12 16
|
breqtrrid |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
18 |
17
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
19 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < B ) |
20 |
|
xmulasslem2 |
|- ( ( 0 < B /\ B = -oo ) -> 0 < ( A *e B ) ) |
21 |
19 20
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = -oo ) -> 0 < ( A *e B ) ) |
22 |
|
simprl |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> B e. RR* ) |
23 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
24 |
22 23
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
26 |
11 18 21 25
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < ( A *e B ) ) |
27 |
|
oveq1 |
|- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
28 |
|
xmulpnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
29 |
28
|
adantl |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( +oo *e B ) = +oo ) |
30 |
27 29
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> ( A *e B ) = +oo ) |
31 |
12 30
|
breqtrrid |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> 0 < ( A *e B ) ) |
32 |
|
xmulasslem2 |
|- ( ( 0 < A /\ A = -oo ) -> 0 < ( A *e B ) ) |
33 |
32
|
ad4ant24 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = -oo ) -> 0 < ( A *e B ) ) |
34 |
|
simpll |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> A e. RR* ) |
35 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
36 |
34 35
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
37 |
26 31 33 36
|
mpjao3dan |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |