| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR* /\ 0 < A ) -> 0 < A ) |
| 2 |
|
simpr |
|- ( ( B e. RR* /\ 0 < B ) -> 0 < B ) |
| 3 |
1 2
|
anim12i |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( 0 < A /\ 0 < B ) ) |
| 4 |
|
mulgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 5 |
4
|
an4s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 6 |
5
|
ancoms |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A x. B ) ) |
| 7 |
|
rexmul |
|- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| 8 |
7
|
adantl |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e B ) = ( A x. B ) ) |
| 9 |
6 8
|
breqtrrd |
|- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
| 10 |
3 9
|
sylan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
| 11 |
10
|
anassrs |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B e. RR ) -> 0 < ( A *e B ) ) |
| 12 |
|
0ltpnf |
|- 0 < +oo |
| 13 |
|
oveq2 |
|- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
| 14 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A *e +oo ) = +oo ) |
| 16 |
13 15
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
| 17 |
12 16
|
breqtrrid |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
| 18 |
17
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
| 19 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < B ) |
| 20 |
|
xmulasslem2 |
|- ( ( 0 < B /\ B = -oo ) -> 0 < ( A *e B ) ) |
| 21 |
19 20
|
sylan |
|- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = -oo ) -> 0 < ( A *e B ) ) |
| 22 |
|
simprl |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> B e. RR* ) |
| 23 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 24 |
22 23
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 25 |
24
|
adantr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 26 |
11 18 21 25
|
mpjao3dan |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < ( A *e B ) ) |
| 27 |
|
oveq1 |
|- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
| 28 |
|
xmulpnf2 |
|- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
| 29 |
28
|
adantl |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( +oo *e B ) = +oo ) |
| 30 |
27 29
|
sylan9eqr |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> ( A *e B ) = +oo ) |
| 31 |
12 30
|
breqtrrid |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> 0 < ( A *e B ) ) |
| 32 |
|
xmulasslem2 |
|- ( ( 0 < A /\ A = -oo ) -> 0 < ( A *e B ) ) |
| 33 |
32
|
ad4ant24 |
|- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = -oo ) -> 0 < ( A *e B ) ) |
| 34 |
|
simpll |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> A e. RR* ) |
| 35 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 36 |
34 35
|
sylib |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 37 |
26 31 33 36
|
mpjao3dan |
|- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |