Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
1re |
|- 1 e. RR |
3 |
|
rexmul |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A *e 1 ) = ( A x. 1 ) ) |
4 |
2 3
|
mpan2 |
|- ( A e. RR -> ( A *e 1 ) = ( A x. 1 ) ) |
5 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
6 |
4 5
|
eqtrd |
|- ( A e. RR -> ( A *e 1 ) = A ) |
7 |
|
1xr |
|- 1 e. RR* |
8 |
|
0lt1 |
|- 0 < 1 |
9 |
|
xmulpnf2 |
|- ( ( 1 e. RR* /\ 0 < 1 ) -> ( +oo *e 1 ) = +oo ) |
10 |
7 8 9
|
mp2an |
|- ( +oo *e 1 ) = +oo |
11 |
|
oveq1 |
|- ( A = +oo -> ( A *e 1 ) = ( +oo *e 1 ) ) |
12 |
|
id |
|- ( A = +oo -> A = +oo ) |
13 |
10 11 12
|
3eqtr4a |
|- ( A = +oo -> ( A *e 1 ) = A ) |
14 |
|
xmulmnf2 |
|- ( ( 1 e. RR* /\ 0 < 1 ) -> ( -oo *e 1 ) = -oo ) |
15 |
7 8 14
|
mp2an |
|- ( -oo *e 1 ) = -oo |
16 |
|
oveq1 |
|- ( A = -oo -> ( A *e 1 ) = ( -oo *e 1 ) ) |
17 |
|
id |
|- ( A = -oo -> A = -oo ) |
18 |
15 16 17
|
3eqtr4a |
|- ( A = -oo -> ( A *e 1 ) = A ) |
19 |
6 13 18
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A *e 1 ) = A ) |
20 |
1 19
|
sylbi |
|- ( A e. RR* -> ( A *e 1 ) = A ) |