| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
rexneg |
|- ( 1 e. RR -> -e 1 = -u 1 ) |
| 3 |
1 2
|
ax-mp |
|- -e 1 = -u 1 |
| 4 |
3
|
oveq1i |
|- ( -e 1 *e A ) = ( -u 1 *e A ) |
| 5 |
|
1xr |
|- 1 e. RR* |
| 6 |
|
xmulneg1 |
|- ( ( 1 e. RR* /\ A e. RR* ) -> ( -e 1 *e A ) = -e ( 1 *e A ) ) |
| 7 |
5 6
|
mpan |
|- ( A e. RR* -> ( -e 1 *e A ) = -e ( 1 *e A ) ) |
| 8 |
4 7
|
eqtr3id |
|- ( A e. RR* -> ( -u 1 *e A ) = -e ( 1 *e A ) ) |
| 9 |
|
xmullid |
|- ( A e. RR* -> ( 1 *e A ) = A ) |
| 10 |
|
xnegeq |
|- ( ( 1 *e A ) = A -> -e ( 1 *e A ) = -e A ) |
| 11 |
9 10
|
syl |
|- ( A e. RR* -> -e ( 1 *e A ) = -e A ) |
| 12 |
8 11
|
eqtrd |
|- ( A e. RR* -> ( -u 1 *e A ) = -e A ) |