Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
rexneg |
|- ( 1 e. RR -> -e 1 = -u 1 ) |
3 |
1 2
|
ax-mp |
|- -e 1 = -u 1 |
4 |
3
|
oveq1i |
|- ( -e 1 *e A ) = ( -u 1 *e A ) |
5 |
|
1xr |
|- 1 e. RR* |
6 |
|
xmulneg1 |
|- ( ( 1 e. RR* /\ A e. RR* ) -> ( -e 1 *e A ) = -e ( 1 *e A ) ) |
7 |
5 6
|
mpan |
|- ( A e. RR* -> ( -e 1 *e A ) = -e ( 1 *e A ) ) |
8 |
4 7
|
eqtr3id |
|- ( A e. RR* -> ( -u 1 *e A ) = -e ( 1 *e A ) ) |
9 |
|
xmulid2 |
|- ( A e. RR* -> ( 1 *e A ) = A ) |
10 |
|
xnegeq |
|- ( ( 1 *e A ) = A -> -e ( 1 *e A ) = -e A ) |
11 |
9 10
|
syl |
|- ( A e. RR* -> -e ( 1 *e A ) = -e A ) |
12 |
8 11
|
eqtrd |
|- ( A e. RR* -> ( -u 1 *e A ) = -e A ) |