Step |
Hyp |
Ref |
Expression |
1 |
|
xnegpnf |
|- -e +oo = -oo |
2 |
1
|
oveq2i |
|- ( A *e -e +oo ) = ( A *e -oo ) |
3 |
|
simpl |
|- ( ( A e. RR* /\ 0 < A ) -> A e. RR* ) |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
|
xmulneg2 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A *e -e +oo ) = -e ( A *e +oo ) ) |
6 |
3 4 5
|
sylancl |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e -e +oo ) = -e ( A *e +oo ) ) |
7 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
8 |
|
xnegeq |
|- ( ( A *e +oo ) = +oo -> -e ( A *e +oo ) = -e +oo ) |
9 |
7 8
|
syl |
|- ( ( A e. RR* /\ 0 < A ) -> -e ( A *e +oo ) = -e +oo ) |
10 |
9 1
|
eqtrdi |
|- ( ( A e. RR* /\ 0 < A ) -> -e ( A *e +oo ) = -oo ) |
11 |
6 10
|
eqtrd |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e -e +oo ) = -oo ) |
12 |
2 11
|
eqtr3id |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e -oo ) = -oo ) |