| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xneg0 |
|- -e 0 = 0 |
| 2 |
1
|
eqeq2i |
|- ( -e A = -e 0 <-> -e A = 0 ) |
| 3 |
|
0xr |
|- 0 e. RR* |
| 4 |
|
xneg11 |
|- ( ( A e. RR* /\ 0 e. RR* ) -> ( -e A = -e 0 <-> A = 0 ) ) |
| 5 |
3 4
|
mpan2 |
|- ( A e. RR* -> ( -e A = -e 0 <-> A = 0 ) ) |
| 6 |
2 5
|
bitr3id |
|- ( A e. RR* -> ( -e A = 0 <-> A = 0 ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A = 0 <-> A = 0 ) ) |
| 8 |
7
|
orbi1d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( -e A = 0 \/ B = 0 ) <-> ( A = 0 \/ B = 0 ) ) ) |
| 9 |
8
|
ifbid |
|- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
| 10 |
|
xnegpnf |
|- -e +oo = -oo |
| 11 |
10
|
eqeq2i |
|- ( -e A = -e +oo <-> -e A = -oo ) |
| 12 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> A e. RR* ) |
| 13 |
|
pnfxr |
|- +oo e. RR* |
| 14 |
|
xneg11 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 15 |
12 13 14
|
sylancl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -e +oo <-> A = +oo ) ) |
| 16 |
11 15
|
bitr3id |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -oo <-> A = +oo ) ) |
| 17 |
16
|
anbi2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < B /\ -e A = -oo ) <-> ( 0 < B /\ A = +oo ) ) ) |
| 18 |
|
xnegmnf |
|- -e -oo = +oo |
| 19 |
18
|
eqeq2i |
|- ( -e A = -e -oo <-> -e A = +oo ) |
| 20 |
|
mnfxr |
|- -oo e. RR* |
| 21 |
|
xneg11 |
|- ( ( A e. RR* /\ -oo e. RR* ) -> ( -e A = -e -oo <-> A = -oo ) ) |
| 22 |
12 20 21
|
sylancl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = -e -oo <-> A = -oo ) ) |
| 23 |
19 22
|
bitr3id |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A = +oo <-> A = -oo ) ) |
| 24 |
23
|
anbi2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( B < 0 /\ -e A = +oo ) <-> ( B < 0 /\ A = -oo ) ) ) |
| 25 |
17 24
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) <-> ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 26 |
|
xlt0neg1 |
|- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( A < 0 <-> 0 < -e A ) ) |
| 28 |
27
|
bicomd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( 0 < -e A <-> A < 0 ) ) |
| 29 |
28
|
anbi1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < -e A /\ B = -oo ) <-> ( A < 0 /\ B = -oo ) ) ) |
| 30 |
|
xlt0neg2 |
|- ( A e. RR* -> ( 0 < A <-> -e A < 0 ) ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( 0 < A <-> -e A < 0 ) ) |
| 32 |
31
|
bicomd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -e A < 0 <-> 0 < A ) ) |
| 33 |
32
|
anbi1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( -e A < 0 /\ B = +oo ) <-> ( 0 < A /\ B = +oo ) ) ) |
| 34 |
29 33
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) <-> ( ( A < 0 /\ B = -oo ) \/ ( 0 < A /\ B = +oo ) ) ) ) |
| 35 |
|
orcom |
|- ( ( ( A < 0 /\ B = -oo ) \/ ( 0 < A /\ B = +oo ) ) <-> ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) |
| 36 |
34 35
|
bitrdi |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) <-> ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 37 |
25 36
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 38 |
37
|
biimpar |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 39 |
38
|
iftrued |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) = -oo ) |
| 40 |
|
xmullem2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 42 |
23
|
anbi2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < B /\ -e A = +oo ) <-> ( 0 < B /\ A = -oo ) ) ) |
| 43 |
16
|
anbi2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( B < 0 /\ -e A = -oo ) <-> ( B < 0 /\ A = +oo ) ) ) |
| 44 |
42 43
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) <-> ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 45 |
28
|
anbi1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( 0 < -e A /\ B = +oo ) <-> ( A < 0 /\ B = +oo ) ) ) |
| 46 |
32
|
anbi1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( -e A < 0 /\ B = -oo ) <-> ( 0 < A /\ B = -oo ) ) ) |
| 47 |
45 46
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) <-> ( ( A < 0 /\ B = +oo ) \/ ( 0 < A /\ B = -oo ) ) ) ) |
| 48 |
|
orcom |
|- ( ( ( A < 0 /\ B = +oo ) \/ ( 0 < A /\ B = -oo ) ) <-> ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) |
| 49 |
47 48
|
bitrdi |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) <-> ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
| 50 |
44 49
|
orbi12d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 51 |
50
|
notbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) <-> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) ) |
| 52 |
41 51
|
sylibrd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) ) |
| 53 |
52
|
imp |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 54 |
53
|
iffalsed |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) |
| 55 |
|
iftrue |
|- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
| 56 |
55
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
| 57 |
|
xnegeq |
|- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e +oo ) |
| 58 |
56 57
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e +oo ) |
| 59 |
58 10
|
eqtrdi |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo ) |
| 60 |
39 54 59
|
3eqtr4d |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 61 |
50
|
biimpar |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 62 |
61
|
iftrued |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = +oo ) |
| 63 |
41
|
con2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 64 |
63
|
imp |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 65 |
64
|
iffalsed |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 66 |
|
iftrue |
|- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = -oo ) |
| 67 |
66
|
adantl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = -oo ) |
| 68 |
65 67
|
eqtrd |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo ) |
| 69 |
|
xnegeq |
|- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -oo -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e -oo ) |
| 70 |
68 69
|
syl |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e -oo ) |
| 71 |
70 18
|
eqtrdi |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = +oo ) |
| 72 |
62 71
|
eqtr4d |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 73 |
72
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 74 |
37
|
notbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) <-> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) ) |
| 75 |
74
|
biimpar |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) ) |
| 77 |
76
|
iffalsed |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) = ( -e A x. B ) ) |
| 78 |
51
|
biimpar |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 79 |
78
|
adantlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -. ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) ) |
| 80 |
79
|
iffalsed |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) |
| 81 |
|
iffalse |
|- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 82 |
81
|
ad2antlr |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 83 |
|
iffalse |
|- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
| 84 |
83
|
adantl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
| 85 |
82 84
|
eqtrd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) ) |
| 86 |
|
xnegeq |
|- ( if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e ( A x. B ) ) |
| 87 |
85 86
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = -e ( A x. B ) ) |
| 88 |
|
xmullem |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. RR ) |
| 89 |
88
|
recnd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> A e. CC ) |
| 90 |
|
ancom |
|- ( ( A e. RR* /\ B e. RR* ) <-> ( B e. RR* /\ A e. RR* ) ) |
| 91 |
|
orcom |
|- ( ( A = 0 \/ B = 0 ) <-> ( B = 0 \/ A = 0 ) ) |
| 92 |
91
|
notbii |
|- ( -. ( A = 0 \/ B = 0 ) <-> -. ( B = 0 \/ A = 0 ) ) |
| 93 |
90 92
|
anbi12i |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) <-> ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) ) |
| 94 |
|
orcom |
|- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 95 |
94
|
notbii |
|- ( -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) <-> -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) |
| 96 |
93 95
|
anbi12i |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) <-> ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) ) |
| 97 |
|
orcom |
|- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 98 |
97
|
notbii |
|- ( -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) <-> -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) |
| 99 |
|
xmullem |
|- ( ( ( ( ( B e. RR* /\ A e. RR* ) /\ -. ( B = 0 \/ A = 0 ) ) /\ -. ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) \/ ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) ) ) /\ -. ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) \/ ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) ) ) -> B e. RR ) |
| 100 |
96 98 99
|
syl2anb |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. RR ) |
| 101 |
100
|
recnd |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> B e. CC ) |
| 102 |
89 101
|
mulneg1d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| 103 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
| 104 |
88 103
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e A = -u A ) |
| 105 |
104
|
oveq1d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -e A x. B ) = ( -u A x. B ) ) |
| 106 |
88 100
|
remulcld |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( A x. B ) e. RR ) |
| 107 |
|
rexneg |
|- ( ( A x. B ) e. RR -> -e ( A x. B ) = -u ( A x. B ) ) |
| 108 |
106 107
|
syl |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e ( A x. B ) = -u ( A x. B ) ) |
| 109 |
102 105 108
|
3eqtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> ( -e A x. B ) = -e ( A x. B ) ) |
| 110 |
87 109
|
eqtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( -e A x. B ) ) |
| 111 |
77 80 110
|
3eqtr4d |
|- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) /\ -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 112 |
73 111
|
pm2.61dan |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) /\ -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 113 |
60 112
|
pm2.61dan |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ -. ( A = 0 \/ B = 0 ) ) -> if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 114 |
113
|
ifeq2da |
|- ( ( A e. RR* /\ B e. RR* ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 115 |
9 114
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 116 |
|
xnegeq |
|- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = -e 0 ) |
| 117 |
116 1
|
eqtrdi |
|- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = 0 ) |
| 118 |
|
xnegeq |
|- ( if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) -> -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 119 |
117 118
|
ifsb |
|- -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , -e if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) |
| 120 |
115 119
|
eqtr4di |
|- ( ( A e. RR* /\ B e. RR* ) -> if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 121 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
| 122 |
|
xmulval |
|- ( ( -e A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
| 123 |
121 122
|
sylan |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = if ( ( -e A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ -e A = +oo ) \/ ( B < 0 /\ -e A = -oo ) ) \/ ( ( 0 < -e A /\ B = +oo ) \/ ( -e A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ -e A = -oo ) \/ ( B < 0 /\ -e A = +oo ) ) \/ ( ( 0 < -e A /\ B = -oo ) \/ ( -e A < 0 /\ B = +oo ) ) ) , -oo , ( -e A x. B ) ) ) ) ) |
| 124 |
|
xmulval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 125 |
|
xnegeq |
|- ( ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) -> -e ( A *e B ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 126 |
124 125
|
syl |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A *e B ) = -e if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 127 |
120 123 126
|
3eqtr4d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A *e B ) = -e ( A *e B ) ) |