| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmulneg1 |
|- ( ( B e. RR* /\ A e. RR* ) -> ( -e B *e A ) = -e ( B *e A ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e B *e A ) = -e ( B *e A ) ) |
| 3 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 4 |
|
xmulcom |
|- ( ( A e. RR* /\ -e B e. RR* ) -> ( A *e -e B ) = ( -e B *e A ) ) |
| 5 |
3 4
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e -e B ) = ( -e B *e A ) ) |
| 6 |
|
xmulcom |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = ( B *e A ) ) |
| 7 |
|
xnegeq |
|- ( ( A *e B ) = ( B *e A ) -> -e ( A *e B ) = -e ( B *e A ) ) |
| 8 |
6 7
|
syl |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A *e B ) = -e ( B *e A ) ) |
| 9 |
2 5 8
|
3eqtr4d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A *e -e B ) = -e ( A *e B ) ) |