| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. RR* /\ A < 0 ) -> A e. RR* ) |
| 2 |
|
pnfxr |
|- +oo e. RR* |
| 3 |
|
xmulneg1 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A *e +oo ) = -e ( A *e +oo ) ) |
| 4 |
1 2 3
|
sylancl |
|- ( ( A e. RR* /\ A < 0 ) -> ( -e A *e +oo ) = -e ( A *e +oo ) ) |
| 5 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
| 6 |
|
xlt0neg1 |
|- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
| 7 |
6
|
biimpa |
|- ( ( A e. RR* /\ A < 0 ) -> 0 < -e A ) |
| 8 |
|
xmulpnf1 |
|- ( ( -e A e. RR* /\ 0 < -e A ) -> ( -e A *e +oo ) = +oo ) |
| 9 |
5 7 8
|
syl2an2r |
|- ( ( A e. RR* /\ A < 0 ) -> ( -e A *e +oo ) = +oo ) |
| 10 |
4 9
|
eqtr3d |
|- ( ( A e. RR* /\ A < 0 ) -> -e ( A *e +oo ) = +oo ) |
| 11 |
|
xnegmnf |
|- -e -oo = +oo |
| 12 |
10 11
|
eqtr4di |
|- ( ( A e. RR* /\ A < 0 ) -> -e ( A *e +oo ) = -e -oo ) |
| 13 |
|
xmulcl |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A *e +oo ) e. RR* ) |
| 14 |
1 2 13
|
sylancl |
|- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) e. RR* ) |
| 15 |
|
mnfxr |
|- -oo e. RR* |
| 16 |
|
xneg11 |
|- ( ( ( A *e +oo ) e. RR* /\ -oo e. RR* ) -> ( -e ( A *e +oo ) = -e -oo <-> ( A *e +oo ) = -oo ) ) |
| 17 |
14 15 16
|
sylancl |
|- ( ( A e. RR* /\ A < 0 ) -> ( -e ( A *e +oo ) = -e -oo <-> ( A *e +oo ) = -oo ) ) |
| 18 |
12 17
|
mpbid |
|- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) = -oo ) |