| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
1re |
|- 1 e. RR |
| 3 |
|
rexmul |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A *e 1 ) = ( A x. 1 ) ) |
| 4 |
2 3
|
mpan2 |
|- ( A e. RR -> ( A *e 1 ) = ( A x. 1 ) ) |
| 5 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
| 6 |
4 5
|
eqtrd |
|- ( A e. RR -> ( A *e 1 ) = A ) |
| 7 |
|
1xr |
|- 1 e. RR* |
| 8 |
|
0lt1 |
|- 0 < 1 |
| 9 |
|
xmulpnf2 |
|- ( ( 1 e. RR* /\ 0 < 1 ) -> ( +oo *e 1 ) = +oo ) |
| 10 |
7 8 9
|
mp2an |
|- ( +oo *e 1 ) = +oo |
| 11 |
|
oveq1 |
|- ( A = +oo -> ( A *e 1 ) = ( +oo *e 1 ) ) |
| 12 |
|
id |
|- ( A = +oo -> A = +oo ) |
| 13 |
10 11 12
|
3eqtr4a |
|- ( A = +oo -> ( A *e 1 ) = A ) |
| 14 |
|
xmulmnf2 |
|- ( ( 1 e. RR* /\ 0 < 1 ) -> ( -oo *e 1 ) = -oo ) |
| 15 |
7 8 14
|
mp2an |
|- ( -oo *e 1 ) = -oo |
| 16 |
|
oveq1 |
|- ( A = -oo -> ( A *e 1 ) = ( -oo *e 1 ) ) |
| 17 |
|
id |
|- ( A = -oo -> A = -oo ) |
| 18 |
15 16 17
|
3eqtr4a |
|- ( A = -oo -> ( A *e 1 ) = A ) |
| 19 |
6 13 18
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A *e 1 ) = A ) |
| 20 |
1 19
|
sylbi |
|- ( A e. RR* -> ( A *e 1 ) = A ) |