Metamath Proof Explorer


Theorem xnegcl

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegcl
|- ( A e. RR* -> -e A e. RR* )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )
2 rexneg
 |-  ( A e. RR -> -e A = -u A )
3 renegcl
 |-  ( A e. RR -> -u A e. RR )
4 2 3 eqeltrd
 |-  ( A e. RR -> -e A e. RR )
5 4 rexrd
 |-  ( A e. RR -> -e A e. RR* )
6 xnegeq
 |-  ( A = +oo -> -e A = -e +oo )
7 xnegpnf
 |-  -e +oo = -oo
8 mnfxr
 |-  -oo e. RR*
9 7 8 eqeltri
 |-  -e +oo e. RR*
10 6 9 eqeltrdi
 |-  ( A = +oo -> -e A e. RR* )
11 xnegeq
 |-  ( A = -oo -> -e A = -e -oo )
12 xnegmnf
 |-  -e -oo = +oo
13 pnfxr
 |-  +oo e. RR*
14 12 13 eqeltri
 |-  -e -oo e. RR*
15 11 14 eqeltrdi
 |-  ( A = -oo -> -e A e. RR* )
16 5 10 15 3jaoi
 |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -e A e. RR* )
17 1 16 sylbi
 |-  ( A e. RR* -> -e A e. RR* )