| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
| 3 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 4 |
2 3
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
| 5 |
4
|
rexrd |
|- ( A e. RR -> -e A e. RR* ) |
| 6 |
|
xnegeq |
|- ( A = +oo -> -e A = -e +oo ) |
| 7 |
|
xnegpnf |
|- -e +oo = -oo |
| 8 |
|
mnfxr |
|- -oo e. RR* |
| 9 |
7 8
|
eqeltri |
|- -e +oo e. RR* |
| 10 |
6 9
|
eqeltrdi |
|- ( A = +oo -> -e A e. RR* ) |
| 11 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
| 12 |
|
xnegmnf |
|- -e -oo = +oo |
| 13 |
|
pnfxr |
|- +oo e. RR* |
| 14 |
12 13
|
eqeltri |
|- -e -oo e. RR* |
| 15 |
11 14
|
eqeltrdi |
|- ( A = -oo -> -e A e. RR* ) |
| 16 |
5 10 15
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -e A e. RR* ) |
| 17 |
1 16
|
sylbi |
|- ( A e. RR* -> -e A e. RR* ) |