Metamath Proof Explorer


Theorem xnegcld

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis xnegcld.1
|- ( ph -> A e. RR* )
Assertion xnegcld
|- ( ph -> -e A e. RR* )

Proof

Step Hyp Ref Expression
1 xnegcld.1
 |-  ( ph -> A e. RR* )
2 xnegcl
 |-  ( A e. RR* -> -e A e. RR* )
3 1 2 syl
 |-  ( ph -> -e A e. RR* )