| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 5 |
|
negdi |
|- ( ( A e. CC /\ B e. CC ) -> -u ( A + B ) = ( -u A + -u B ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> -u ( A + B ) = ( -u A + -u B ) ) |
| 7 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 8 |
|
rexneg |
|- ( ( A + B ) e. RR -> -e ( A + B ) = -u ( A + B ) ) |
| 9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> -e ( A + B ) = -u ( A + B ) ) |
| 10 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 11 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
| 12 |
|
rexadd |
|- ( ( -u A e. RR /\ -u B e. RR ) -> ( -u A +e -u B ) = ( -u A + -u B ) ) |
| 13 |
10 11 12
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( -u A +e -u B ) = ( -u A + -u B ) ) |
| 14 |
6 9 13
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> -e ( A + B ) = ( -u A +e -u B ) ) |
| 15 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| 16 |
|
xnegeq |
|- ( ( A +e B ) = ( A + B ) -> -e ( A +e B ) = -e ( A + B ) ) |
| 17 |
15 16
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> -e ( A +e B ) = -e ( A + B ) ) |
| 18 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
| 19 |
|
rexneg |
|- ( B e. RR -> -e B = -u B ) |
| 20 |
18 19
|
oveqan12d |
|- ( ( A e. RR /\ B e. RR ) -> ( -e A +e -e B ) = ( -u A +e -u B ) ) |
| 21 |
14 17 20
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 22 |
|
xnegpnf |
|- -e +oo = -oo |
| 23 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
| 24 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 25 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
| 26 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 27 |
24 25 26
|
syl2anc |
|- ( A e. RR -> ( A +e +oo ) = +oo ) |
| 28 |
23 27
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
| 29 |
|
xnegeq |
|- ( ( A +e B ) = +oo -> -e ( A +e B ) = -e +oo ) |
| 30 |
28 29
|
syl |
|- ( ( A e. RR /\ B = +oo ) -> -e ( A +e B ) = -e +oo ) |
| 31 |
|
xnegeq |
|- ( B = +oo -> -e B = -e +oo ) |
| 32 |
31 22
|
eqtrdi |
|- ( B = +oo -> -e B = -oo ) |
| 33 |
32
|
oveq2d |
|- ( B = +oo -> ( -e A +e -e B ) = ( -e A +e -oo ) ) |
| 34 |
18 10
|
eqeltrd |
|- ( A e. RR -> -e A e. RR ) |
| 35 |
|
rexr |
|- ( -e A e. RR -> -e A e. RR* ) |
| 36 |
|
renepnf |
|- ( -e A e. RR -> -e A =/= +oo ) |
| 37 |
|
xaddmnf1 |
|- ( ( -e A e. RR* /\ -e A =/= +oo ) -> ( -e A +e -oo ) = -oo ) |
| 38 |
35 36 37
|
syl2anc |
|- ( -e A e. RR -> ( -e A +e -oo ) = -oo ) |
| 39 |
34 38
|
syl |
|- ( A e. RR -> ( -e A +e -oo ) = -oo ) |
| 40 |
33 39
|
sylan9eqr |
|- ( ( A e. RR /\ B = +oo ) -> ( -e A +e -e B ) = -oo ) |
| 41 |
22 30 40
|
3eqtr4a |
|- ( ( A e. RR /\ B = +oo ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 42 |
|
xnegmnf |
|- -e -oo = +oo |
| 43 |
|
oveq2 |
|- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
| 44 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
| 45 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 46 |
24 44 45
|
syl2anc |
|- ( A e. RR -> ( A +e -oo ) = -oo ) |
| 47 |
43 46
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
| 48 |
|
xnegeq |
|- ( ( A +e B ) = -oo -> -e ( A +e B ) = -e -oo ) |
| 49 |
47 48
|
syl |
|- ( ( A e. RR /\ B = -oo ) -> -e ( A +e B ) = -e -oo ) |
| 50 |
|
xnegeq |
|- ( B = -oo -> -e B = -e -oo ) |
| 51 |
50 42
|
eqtrdi |
|- ( B = -oo -> -e B = +oo ) |
| 52 |
51
|
oveq2d |
|- ( B = -oo -> ( -e A +e -e B ) = ( -e A +e +oo ) ) |
| 53 |
|
renemnf |
|- ( -e A e. RR -> -e A =/= -oo ) |
| 54 |
|
xaddpnf1 |
|- ( ( -e A e. RR* /\ -e A =/= -oo ) -> ( -e A +e +oo ) = +oo ) |
| 55 |
35 53 54
|
syl2anc |
|- ( -e A e. RR -> ( -e A +e +oo ) = +oo ) |
| 56 |
34 55
|
syl |
|- ( A e. RR -> ( -e A +e +oo ) = +oo ) |
| 57 |
52 56
|
sylan9eqr |
|- ( ( A e. RR /\ B = -oo ) -> ( -e A +e -e B ) = +oo ) |
| 58 |
42 49 57
|
3eqtr4a |
|- ( ( A e. RR /\ B = -oo ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 59 |
21 41 58
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 60 |
2 59
|
sylan2b |
|- ( ( A e. RR /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 61 |
|
xneg0 |
|- -e 0 = 0 |
| 62 |
|
simpr |
|- ( ( B e. RR* /\ B = -oo ) -> B = -oo ) |
| 63 |
62
|
oveq2d |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( +oo +e -oo ) ) |
| 64 |
|
pnfaddmnf |
|- ( +oo +e -oo ) = 0 |
| 65 |
63 64
|
eqtrdi |
|- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = 0 ) |
| 66 |
|
xnegeq |
|- ( ( +oo +e B ) = 0 -> -e ( +oo +e B ) = -e 0 ) |
| 67 |
65 66
|
syl |
|- ( ( B e. RR* /\ B = -oo ) -> -e ( +oo +e B ) = -e 0 ) |
| 68 |
51
|
adantl |
|- ( ( B e. RR* /\ B = -oo ) -> -e B = +oo ) |
| 69 |
68
|
oveq2d |
|- ( ( B e. RR* /\ B = -oo ) -> ( -oo +e -e B ) = ( -oo +e +oo ) ) |
| 70 |
|
mnfaddpnf |
|- ( -oo +e +oo ) = 0 |
| 71 |
69 70
|
eqtrdi |
|- ( ( B e. RR* /\ B = -oo ) -> ( -oo +e -e B ) = 0 ) |
| 72 |
61 67 71
|
3eqtr4a |
|- ( ( B e. RR* /\ B = -oo ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 73 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
| 74 |
|
xnegeq |
|- ( ( +oo +e B ) = +oo -> -e ( +oo +e B ) = -e +oo ) |
| 75 |
73 74
|
syl |
|- ( ( B e. RR* /\ B =/= -oo ) -> -e ( +oo +e B ) = -e +oo ) |
| 76 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 77 |
|
xnegeq |
|- ( -e B = +oo -> -e -e B = -e +oo ) |
| 78 |
77 22
|
eqtrdi |
|- ( -e B = +oo -> -e -e B = -oo ) |
| 79 |
|
xnegneg |
|- ( B e. RR* -> -e -e B = B ) |
| 80 |
79
|
eqeq1d |
|- ( B e. RR* -> ( -e -e B = -oo <-> B = -oo ) ) |
| 81 |
78 80
|
imbitrid |
|- ( B e. RR* -> ( -e B = +oo -> B = -oo ) ) |
| 82 |
81
|
necon3d |
|- ( B e. RR* -> ( B =/= -oo -> -e B =/= +oo ) ) |
| 83 |
82
|
imp |
|- ( ( B e. RR* /\ B =/= -oo ) -> -e B =/= +oo ) |
| 84 |
|
xaddmnf2 |
|- ( ( -e B e. RR* /\ -e B =/= +oo ) -> ( -oo +e -e B ) = -oo ) |
| 85 |
76 83 84
|
syl2an2r |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( -oo +e -e B ) = -oo ) |
| 86 |
22 75 85
|
3eqtr4a |
|- ( ( B e. RR* /\ B =/= -oo ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 87 |
72 86
|
pm2.61dane |
|- ( B e. RR* -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 88 |
87
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -e ( +oo +e B ) = ( -oo +e -e B ) ) |
| 89 |
|
simpl |
|- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
| 90 |
89
|
oveq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( +oo +e B ) ) |
| 91 |
|
xnegeq |
|- ( ( A +e B ) = ( +oo +e B ) -> -e ( A +e B ) = -e ( +oo +e B ) ) |
| 92 |
90 91
|
syl |
|- ( ( A = +oo /\ B e. RR* ) -> -e ( A +e B ) = -e ( +oo +e B ) ) |
| 93 |
|
xnegeq |
|- ( A = +oo -> -e A = -e +oo ) |
| 94 |
93
|
adantr |
|- ( ( A = +oo /\ B e. RR* ) -> -e A = -e +oo ) |
| 95 |
94 22
|
eqtrdi |
|- ( ( A = +oo /\ B e. RR* ) -> -e A = -oo ) |
| 96 |
95
|
oveq1d |
|- ( ( A = +oo /\ B e. RR* ) -> ( -e A +e -e B ) = ( -oo +e -e B ) ) |
| 97 |
88 92 96
|
3eqtr4d |
|- ( ( A = +oo /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 98 |
|
simpr |
|- ( ( B e. RR* /\ B = +oo ) -> B = +oo ) |
| 99 |
98
|
oveq2d |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( -oo +e +oo ) ) |
| 100 |
99 70
|
eqtrdi |
|- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = 0 ) |
| 101 |
|
xnegeq |
|- ( ( -oo +e B ) = 0 -> -e ( -oo +e B ) = -e 0 ) |
| 102 |
100 101
|
syl |
|- ( ( B e. RR* /\ B = +oo ) -> -e ( -oo +e B ) = -e 0 ) |
| 103 |
32
|
adantl |
|- ( ( B e. RR* /\ B = +oo ) -> -e B = -oo ) |
| 104 |
103
|
oveq2d |
|- ( ( B e. RR* /\ B = +oo ) -> ( +oo +e -e B ) = ( +oo +e -oo ) ) |
| 105 |
104 64
|
eqtrdi |
|- ( ( B e. RR* /\ B = +oo ) -> ( +oo +e -e B ) = 0 ) |
| 106 |
61 102 105
|
3eqtr4a |
|- ( ( B e. RR* /\ B = +oo ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 107 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
| 108 |
|
xnegeq |
|- ( ( -oo +e B ) = -oo -> -e ( -oo +e B ) = -e -oo ) |
| 109 |
107 108
|
syl |
|- ( ( B e. RR* /\ B =/= +oo ) -> -e ( -oo +e B ) = -e -oo ) |
| 110 |
|
xnegeq |
|- ( -e B = -oo -> -e -e B = -e -oo ) |
| 111 |
110 42
|
eqtrdi |
|- ( -e B = -oo -> -e -e B = +oo ) |
| 112 |
79
|
eqeq1d |
|- ( B e. RR* -> ( -e -e B = +oo <-> B = +oo ) ) |
| 113 |
111 112
|
imbitrid |
|- ( B e. RR* -> ( -e B = -oo -> B = +oo ) ) |
| 114 |
113
|
necon3d |
|- ( B e. RR* -> ( B =/= +oo -> -e B =/= -oo ) ) |
| 115 |
114
|
imp |
|- ( ( B e. RR* /\ B =/= +oo ) -> -e B =/= -oo ) |
| 116 |
|
xaddpnf2 |
|- ( ( -e B e. RR* /\ -e B =/= -oo ) -> ( +oo +e -e B ) = +oo ) |
| 117 |
76 115 116
|
syl2an2r |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( +oo +e -e B ) = +oo ) |
| 118 |
42 109 117
|
3eqtr4a |
|- ( ( B e. RR* /\ B =/= +oo ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 119 |
106 118
|
pm2.61dane |
|- ( B e. RR* -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 120 |
119
|
adantl |
|- ( ( A = -oo /\ B e. RR* ) -> -e ( -oo +e B ) = ( +oo +e -e B ) ) |
| 121 |
|
simpl |
|- ( ( A = -oo /\ B e. RR* ) -> A = -oo ) |
| 122 |
121
|
oveq1d |
|- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( -oo +e B ) ) |
| 123 |
|
xnegeq |
|- ( ( A +e B ) = ( -oo +e B ) -> -e ( A +e B ) = -e ( -oo +e B ) ) |
| 124 |
122 123
|
syl |
|- ( ( A = -oo /\ B e. RR* ) -> -e ( A +e B ) = -e ( -oo +e B ) ) |
| 125 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
| 126 |
125
|
adantr |
|- ( ( A = -oo /\ B e. RR* ) -> -e A = -e -oo ) |
| 127 |
126 42
|
eqtrdi |
|- ( ( A = -oo /\ B e. RR* ) -> -e A = +oo ) |
| 128 |
127
|
oveq1d |
|- ( ( A = -oo /\ B e. RR* ) -> ( -e A +e -e B ) = ( +oo +e -e B ) ) |
| 129 |
120 124 128
|
3eqtr4d |
|- ( ( A = -oo /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 130 |
60 97 129
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |
| 131 |
1 130
|
sylanb |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e B ) = ( -e A +e -e B ) ) |