Metamath Proof Explorer


Theorem xnegex

Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegex
|- -e A e. _V

Proof

Step Hyp Ref Expression
1 df-xneg
 |-  -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) )
2 mnfxr
 |-  -oo e. RR*
3 2 elexi
 |-  -oo e. _V
4 pnfex
 |-  +oo e. _V
5 negex
 |-  -u A e. _V
6 4 5 ifex
 |-  if ( A = -oo , +oo , -u A ) e. _V
7 3 6 ifex
 |-  if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) e. _V
8 1 7 eqeltri
 |-  -e A e. _V