Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xnegex | |- -e A e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
|
2 | mnfxr | |- -oo e. RR* |
|
3 | 2 | elexi | |- -oo e. _V |
4 | pnfex | |- +oo e. _V |
|
5 | negex | |- -u A e. _V |
|
6 | 4 5 | ifex | |- if ( A = -oo , +oo , -u A ) e. _V |
7 | 3 6 | ifex | |- if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) e. _V |
8 | 1 7 | eqeltri | |- -e A e. _V |