Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegex | |- -e A e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | 2 | elexi | |- -oo e. _V |
| 4 | pnfex | |- +oo e. _V |
|
| 5 | negex | |- -u A e. _V |
|
| 6 | 4 5 | ifex | |- if ( A = -oo , +oo , -u A ) e. _V |
| 7 | 3 6 | ifex | |- if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) e. _V |
| 8 | 1 7 | eqeltri | |- -e A e. _V |