Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
rexneg |
|- ( A e. RR -> -e A = -u A ) |
3 |
|
xnegeq |
|- ( -e A = -u A -> -e -e A = -e -u A ) |
4 |
2 3
|
syl |
|- ( A e. RR -> -e -e A = -e -u A ) |
5 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
6 |
|
rexneg |
|- ( -u A e. RR -> -e -u A = -u -u A ) |
7 |
5 6
|
syl |
|- ( A e. RR -> -e -u A = -u -u A ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
8
|
negnegd |
|- ( A e. RR -> -u -u A = A ) |
10 |
4 7 9
|
3eqtrd |
|- ( A e. RR -> -e -e A = A ) |
11 |
|
xnegmnf |
|- -e -oo = +oo |
12 |
|
xnegeq |
|- ( A = +oo -> -e A = -e +oo ) |
13 |
|
xnegpnf |
|- -e +oo = -oo |
14 |
12 13
|
eqtrdi |
|- ( A = +oo -> -e A = -oo ) |
15 |
|
xnegeq |
|- ( -e A = -oo -> -e -e A = -e -oo ) |
16 |
14 15
|
syl |
|- ( A = +oo -> -e -e A = -e -oo ) |
17 |
|
id |
|- ( A = +oo -> A = +oo ) |
18 |
11 16 17
|
3eqtr4a |
|- ( A = +oo -> -e -e A = A ) |
19 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
20 |
19 11
|
eqtrdi |
|- ( A = -oo -> -e A = +oo ) |
21 |
|
xnegeq |
|- ( -e A = +oo -> -e -e A = -e +oo ) |
22 |
20 21
|
syl |
|- ( A = -oo -> -e -e A = -e +oo ) |
23 |
|
id |
|- ( A = -oo -> A = -oo ) |
24 |
13 22 23
|
3eqtr4a |
|- ( A = -oo -> -e -e A = A ) |
25 |
10 18 24
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -e -e A = A ) |
26 |
1 25
|
sylbi |
|- ( A e. RR* -> -e -e A = A ) |