Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xnegnegi.1 | |- A e. RR* |
|
Assertion | xnegnegi | |- -e -e A = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegnegi.1 | |- A e. RR* |
|
2 | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
|
3 | 1 2 | ax-mp | |- -e -e A = A |