Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | xnegre | |- ( A e. RR* -> ( A e. RR <-> -e A e. RR ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegrecl | |- ( A e. RR -> -e A e. RR ) |
|
2 | 1 | adantl | |- ( ( A e. RR* /\ A e. RR ) -> -e A e. RR ) |
3 | xnegrecl2 | |- ( ( A e. RR* /\ -e A e. RR ) -> A e. RR ) |
|
4 | 2 3 | impbida | |- ( A e. RR* -> ( A e. RR <-> -e A e. RR ) ) |