| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xnn0add4d.1 |  |-  ( ph -> A e. NN0* ) | 
						
							| 2 |  | xnn0add4d.2 |  |-  ( ph -> B e. NN0* ) | 
						
							| 3 |  | xnn0add4d.3 |  |-  ( ph -> C e. NN0* ) | 
						
							| 4 |  | xnn0add4d.4 |  |-  ( ph -> D e. NN0* ) | 
						
							| 5 |  | xnn0xrnemnf |  |-  ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> ( A e. RR* /\ A =/= -oo ) ) | 
						
							| 7 |  | xnn0xrnemnf |  |-  ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( B e. RR* /\ B =/= -oo ) ) | 
						
							| 9 |  | xnn0xrnemnf |  |-  ( C e. NN0* -> ( C e. RR* /\ C =/= -oo ) ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> ( C e. RR* /\ C =/= -oo ) ) | 
						
							| 11 |  | xnn0xrnemnf |  |-  ( D e. NN0* -> ( D e. RR* /\ D =/= -oo ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> ( D e. RR* /\ D =/= -oo ) ) | 
						
							| 13 | 6 8 10 12 | xadd4d |  |-  ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |