Metamath Proof Explorer


Theorem xnn0add4d

Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d . (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypotheses xnn0add4d.1
|- ( ph -> A e. NN0* )
xnn0add4d.2
|- ( ph -> B e. NN0* )
xnn0add4d.3
|- ( ph -> C e. NN0* )
xnn0add4d.4
|- ( ph -> D e. NN0* )
Assertion xnn0add4d
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) )

Proof

Step Hyp Ref Expression
1 xnn0add4d.1
 |-  ( ph -> A e. NN0* )
2 xnn0add4d.2
 |-  ( ph -> B e. NN0* )
3 xnn0add4d.3
 |-  ( ph -> C e. NN0* )
4 xnn0add4d.4
 |-  ( ph -> D e. NN0* )
5 xnn0xrnemnf
 |-  ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) )
6 1 5 syl
 |-  ( ph -> ( A e. RR* /\ A =/= -oo ) )
7 xnn0xrnemnf
 |-  ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) )
8 2 7 syl
 |-  ( ph -> ( B e. RR* /\ B =/= -oo ) )
9 xnn0xrnemnf
 |-  ( C e. NN0* -> ( C e. RR* /\ C =/= -oo ) )
10 3 9 syl
 |-  ( ph -> ( C e. RR* /\ C =/= -oo ) )
11 xnn0xrnemnf
 |-  ( D e. NN0* -> ( D e. RR* /\ D =/= -oo ) )
12 4 11 syl
 |-  ( ph -> ( D e. RR* /\ D =/= -oo ) )
13 6 8 10 12 xadd4d
 |-  ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) )