Step |
Hyp |
Ref |
Expression |
1 |
|
xnn0add4d.1 |
|- ( ph -> A e. NN0* ) |
2 |
|
xnn0add4d.2 |
|- ( ph -> B e. NN0* ) |
3 |
|
xnn0add4d.3 |
|- ( ph -> C e. NN0* ) |
4 |
|
xnn0add4d.4 |
|- ( ph -> D e. NN0* ) |
5 |
|
xnn0xrnemnf |
|- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
6 |
1 5
|
syl |
|- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
7 |
|
xnn0xrnemnf |
|- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
8 |
2 7
|
syl |
|- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
9 |
|
xnn0xrnemnf |
|- ( C e. NN0* -> ( C e. RR* /\ C =/= -oo ) ) |
10 |
3 9
|
syl |
|- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
11 |
|
xnn0xrnemnf |
|- ( D e. NN0* -> ( D e. RR* /\ D =/= -oo ) ) |
12 |
4 11
|
syl |
|- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
13 |
6 8 10 12
|
xadd4d |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |