Metamath Proof Explorer


Theorem xnn0ge0

Description: An extended nonnegative integer is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0ge0
|- ( N e. NN0* -> 0 <_ N )

Proof

Step Hyp Ref Expression
1 elxnn0
 |-  ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) )
2 nn0ge0
 |-  ( N e. NN0 -> 0 <_ N )
3 0lepnf
 |-  0 <_ +oo
4 breq2
 |-  ( N = +oo -> ( 0 <_ N <-> 0 <_ +oo ) )
5 3 4 mpbiri
 |-  ( N = +oo -> 0 <_ N )
6 2 5 jaoi
 |-  ( ( N e. NN0 \/ N = +oo ) -> 0 <_ N )
7 1 6 sylbi
 |-  ( N e. NN0* -> 0 <_ N )