| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 |  |-  ( M e. NN0* <-> ( M e. NN0 \/ M = +oo ) ) | 
						
							| 2 |  | 2a1 |  |-  ( M e. NN0 -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) | 
						
							| 3 |  | breq1 |  |-  ( M = +oo -> ( M <_ N <-> +oo <_ N ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N <-> +oo <_ N ) ) | 
						
							| 5 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 6 | 5 | rexrd |  |-  ( N e. NN0 -> N e. RR* ) | 
						
							| 7 |  | xgepnf |  |-  ( N e. RR* -> ( +oo <_ N <-> N = +oo ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN0 -> ( +oo <_ N <-> N = +oo ) ) | 
						
							| 9 |  | pnfnre |  |-  +oo e/ RR | 
						
							| 10 |  | eleq1 |  |-  ( N = +oo -> ( N e. NN0 <-> +oo e. NN0 ) ) | 
						
							| 11 |  | nn0re |  |-  ( +oo e. NN0 -> +oo e. RR ) | 
						
							| 12 |  | pm2.24nel |  |-  ( +oo e. RR -> ( +oo e/ RR -> M e. NN0 ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( +oo e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) | 
						
							| 14 | 10 13 | biimtrdi |  |-  ( N = +oo -> ( N e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) ) | 
						
							| 15 | 14 | com13 |  |-  ( +oo e/ RR -> ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) ) | 
						
							| 16 | 9 15 | ax-mp |  |-  ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) | 
						
							| 17 | 8 16 | sylbid |  |-  ( N e. NN0 -> ( +oo <_ N -> M e. NN0 ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( M = +oo /\ N e. NN0 ) -> ( +oo <_ N -> M e. NN0 ) ) | 
						
							| 19 | 4 18 | sylbid |  |-  ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N -> M e. NN0 ) ) | 
						
							| 20 | 19 | ex |  |-  ( M = +oo -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) | 
						
							| 21 | 2 20 | jaoi |  |-  ( ( M e. NN0 \/ M = +oo ) -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) | 
						
							| 22 | 1 21 | sylbi |  |-  ( M e. NN0* -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) | 
						
							| 23 | 22 | 3imp |  |-  ( ( M e. NN0* /\ N e. NN0 /\ M <_ N ) -> M e. NN0 ) |