Step |
Hyp |
Ref |
Expression |
1 |
|
elxnn0 |
|- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
2 |
|
nn0n0n1ge2b |
|- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
|
nn0nepnf |
|- ( 0 e. NN0 -> 0 =/= +oo ) |
5 |
3 4
|
ax-mp |
|- 0 =/= +oo |
6 |
5
|
necomi |
|- +oo =/= 0 |
7 |
|
neeq1 |
|- ( N = +oo -> ( N =/= 0 <-> +oo =/= 0 ) ) |
8 |
6 7
|
mpbiri |
|- ( N = +oo -> N =/= 0 ) |
9 |
|
1nn0 |
|- 1 e. NN0 |
10 |
|
nn0nepnf |
|- ( 1 e. NN0 -> 1 =/= +oo ) |
11 |
9 10
|
ax-mp |
|- 1 =/= +oo |
12 |
11
|
necomi |
|- +oo =/= 1 |
13 |
|
neeq1 |
|- ( N = +oo -> ( N =/= 1 <-> +oo =/= 1 ) ) |
14 |
12 13
|
mpbiri |
|- ( N = +oo -> N =/= 1 ) |
15 |
8 14
|
jca |
|- ( N = +oo -> ( N =/= 0 /\ N =/= 1 ) ) |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
rexri |
|- 2 e. RR* |
18 |
|
pnfge |
|- ( 2 e. RR* -> 2 <_ +oo ) |
19 |
17 18
|
ax-mp |
|- 2 <_ +oo |
20 |
|
breq2 |
|- ( N = +oo -> ( 2 <_ N <-> 2 <_ +oo ) ) |
21 |
19 20
|
mpbiri |
|- ( N = +oo -> 2 <_ N ) |
22 |
15 21
|
2thd |
|- ( N = +oo -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
23 |
2 22
|
jaoi |
|- ( ( N e. NN0 \/ N = +oo ) -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
24 |
1 23
|
sylbi |
|- ( N e. NN0* -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |