| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 |  |-  ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) | 
						
							| 2 |  | elxnn0 |  |-  ( B e. NN0* <-> ( B e. NN0 \/ B = +oo ) ) | 
						
							| 3 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 4 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 5 |  | rexadd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) | 
						
							| 6 | 3 4 5 | syl2an |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A +e B ) = ( A + B ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A + B ) = 0 ) ) | 
						
							| 8 |  | nn0ge0 |  |-  ( A e. NN0 -> 0 <_ A ) | 
						
							| 9 | 3 8 | jca |  |-  ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 10 |  | nn0ge0 |  |-  ( B e. NN0 -> 0 <_ B ) | 
						
							| 11 | 4 10 | jca |  |-  ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) | 
						
							| 12 |  | add20 |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 13 | 9 11 12 | syl2an |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 14 | 7 13 | bitrd |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 15 | 14 | biimpd |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 16 | 15 | expcom |  |-  ( B e. NN0 -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( B = +oo -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) | 
						
							| 20 |  | nn0xnn0 |  |-  ( A e. NN0 -> A e. NN0* ) | 
						
							| 21 |  | xnn0xrnemnf |  |-  ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) | 
						
							| 22 |  | xaddpnf1 |  |-  ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( A e. NN0 -> ( A +e +oo ) = +oo ) | 
						
							| 24 | 23 | adantl |  |-  ( ( B = +oo /\ A e. NN0 ) -> ( A +e +oo ) = +oo ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e +oo ) = 0 <-> +oo = 0 ) ) | 
						
							| 26 | 19 25 | bitrd |  |-  ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) | 
						
							| 27 |  | 0re |  |-  0 e. RR | 
						
							| 28 |  | renepnf |  |-  ( 0 e. RR -> 0 =/= +oo ) | 
						
							| 29 | 27 28 | ax-mp |  |-  0 =/= +oo | 
						
							| 30 | 29 | nesymi |  |-  -. +oo = 0 | 
						
							| 31 | 30 | pm2.21i |  |-  ( +oo = 0 -> ( A = 0 /\ B = 0 ) ) | 
						
							| 32 | 26 31 | biimtrdi |  |-  ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 33 | 32 | ex |  |-  ( B = +oo -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 34 | 16 33 | jaoi |  |-  ( ( B e. NN0 \/ B = +oo ) -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 35 | 2 34 | sylbi |  |-  ( B e. NN0* -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 36 | 35 | com12 |  |-  ( A e. NN0 -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 37 |  | oveq1 |  |-  ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) | 
						
							| 38 | 37 | eqeq1d |  |-  ( A = +oo -> ( ( A +e B ) = 0 <-> ( +oo +e B ) = 0 ) ) | 
						
							| 39 |  | xnn0xrnemnf |  |-  ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) | 
						
							| 40 |  | xaddpnf2 |  |-  ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) | 
						
							| 41 | 39 40 | syl |  |-  ( B e. NN0* -> ( +oo +e B ) = +oo ) | 
						
							| 42 | 41 | eqeq1d |  |-  ( B e. NN0* -> ( ( +oo +e B ) = 0 <-> +oo = 0 ) ) | 
						
							| 43 | 38 42 | sylan9bb |  |-  ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) | 
						
							| 44 | 43 31 | biimtrdi |  |-  ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( A = +oo -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 46 | 36 45 | jaoi |  |-  ( ( A e. NN0 \/ A = +oo ) -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 47 | 1 46 | sylbi |  |-  ( A e. NN0* -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) | 
						
							| 49 |  | oveq12 |  |-  ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = ( 0 +e 0 ) ) | 
						
							| 50 |  | 0xr |  |-  0 e. RR* | 
						
							| 51 |  | xaddrid |  |-  ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) | 
						
							| 52 | 50 51 | ax-mp |  |-  ( 0 +e 0 ) = 0 | 
						
							| 53 | 49 52 | eqtrdi |  |-  ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = 0 ) | 
						
							| 54 | 48 53 | impbid1 |  |-  ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |