| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0addcl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. NN0 ) | 
						
							| 2 | 1 | nn0xnn0d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. NN0* ) | 
						
							| 3 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 4 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 5 |  | rexadd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A +e B ) e. NN0* <-> ( A + B ) e. NN0* ) ) | 
						
							| 7 | 3 4 6 | syl2an |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) e. NN0* <-> ( A + B ) e. NN0* ) ) | 
						
							| 8 | 2 7 | mpbird |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A +e B ) e. NN0* ) | 
						
							| 9 | 8 | a1d |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) | 
						
							| 10 |  | ianor |  |-  ( -. ( A e. NN0 /\ B e. NN0 ) <-> ( -. A e. NN0 \/ -. B e. NN0 ) ) | 
						
							| 11 |  | xnn0nnn0pnf |  |-  ( ( A e. NN0* /\ -. A e. NN0 ) -> A = +oo ) | 
						
							| 12 |  | oveq1 |  |-  ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) | 
						
							| 13 |  | xnn0xrnemnf |  |-  ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) | 
						
							| 14 |  | xaddpnf2 |  |-  ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) | 
						
							| 15 | 13 14 | syl |  |-  ( B e. NN0* -> ( +oo +e B ) = +oo ) | 
						
							| 16 | 12 15 | sylan9eq |  |-  ( ( A = +oo /\ B e. NN0* ) -> ( A +e B ) = +oo ) | 
						
							| 17 | 16 | ex |  |-  ( A = +oo -> ( B e. NN0* -> ( A +e B ) = +oo ) ) | 
						
							| 18 | 11 17 | syl |  |-  ( ( A e. NN0* /\ -. A e. NN0 ) -> ( B e. NN0* -> ( A +e B ) = +oo ) ) | 
						
							| 19 | 18 | expcom |  |-  ( -. A e. NN0 -> ( A e. NN0* -> ( B e. NN0* -> ( A +e B ) = +oo ) ) ) | 
						
							| 20 | 19 | impd |  |-  ( -. A e. NN0 -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) | 
						
							| 21 |  | xnn0nnn0pnf |  |-  ( ( B e. NN0* /\ -. B e. NN0 ) -> B = +oo ) | 
						
							| 22 |  | oveq2 |  |-  ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) | 
						
							| 23 |  | xnn0xrnemnf |  |-  ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) | 
						
							| 24 |  | xaddpnf1 |  |-  ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) | 
						
							| 25 | 23 24 | syl |  |-  ( A e. NN0* -> ( A +e +oo ) = +oo ) | 
						
							| 26 | 22 25 | sylan9eq |  |-  ( ( B = +oo /\ A e. NN0* ) -> ( A +e B ) = +oo ) | 
						
							| 27 | 26 | ex |  |-  ( B = +oo -> ( A e. NN0* -> ( A +e B ) = +oo ) ) | 
						
							| 28 | 21 27 | syl |  |-  ( ( B e. NN0* /\ -. B e. NN0 ) -> ( A e. NN0* -> ( A +e B ) = +oo ) ) | 
						
							| 29 | 28 | expcom |  |-  ( -. B e. NN0 -> ( B e. NN0* -> ( A e. NN0* -> ( A +e B ) = +oo ) ) ) | 
						
							| 30 | 29 | impcomd |  |-  ( -. B e. NN0 -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) | 
						
							| 31 | 20 30 | jaoi |  |-  ( ( -. A e. NN0 \/ -. B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( -. A e. NN0 \/ -. B e. NN0 ) /\ ( A e. NN0* /\ B e. NN0* ) ) -> ( A +e B ) = +oo ) | 
						
							| 33 |  | pnf0xnn0 |  |-  +oo e. NN0* | 
						
							| 34 | 32 33 | eqeltrdi |  |-  ( ( ( -. A e. NN0 \/ -. B e. NN0 ) /\ ( A e. NN0* /\ B e. NN0* ) ) -> ( A +e B ) e. NN0* ) | 
						
							| 35 | 34 | ex |  |-  ( ( -. A e. NN0 \/ -. B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) | 
						
							| 36 | 10 35 | sylbi |  |-  ( -. ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) | 
						
							| 37 | 9 36 | pm2.61i |  |-  ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) |