Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xr | |- ( A e. NN0* -> A e. RR* ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxnn0 | |- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) | |
| 2 | nn0re | |- ( A e. NN0 -> A e. RR ) | |
| 3 | 2 | rexrd | |- ( A e. NN0 -> A e. RR* ) | 
| 4 | pnfxr | |- +oo e. RR* | |
| 5 | eleq1 | |- ( A = +oo -> ( A e. RR* <-> +oo e. RR* ) ) | |
| 6 | 4 5 | mpbiri | |- ( A = +oo -> A e. RR* ) | 
| 7 | 3 6 | jaoi | |- ( ( A e. NN0 \/ A = +oo ) -> A e. RR* ) | 
| 8 | 1 7 | sylbi | |- ( A e. NN0* -> A e. RR* ) |