| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 |  |-  ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) | 
						
							| 2 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 3 | 2 | rexrd |  |-  ( A e. NN0 -> A e. RR* ) | 
						
							| 4 |  | nn0ge0 |  |-  ( A e. NN0 -> 0 <_ A ) | 
						
							| 5 |  | elxrge0 |  |-  ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) | 
						
							| 6 | 3 4 5 | sylanbrc |  |-  ( A e. NN0 -> A e. ( 0 [,] +oo ) ) | 
						
							| 7 |  | 0xr |  |-  0 e. RR* | 
						
							| 8 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 9 |  | 0lepnf |  |-  0 <_ +oo | 
						
							| 10 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) | 
						
							| 11 | 7 8 9 10 | mp3an |  |-  +oo e. ( 0 [,] +oo ) | 
						
							| 12 |  | eleq1 |  |-  ( A = +oo -> ( A e. ( 0 [,] +oo ) <-> +oo e. ( 0 [,] +oo ) ) ) | 
						
							| 13 | 11 12 | mpbiri |  |-  ( A = +oo -> A e. ( 0 [,] +oo ) ) | 
						
							| 14 | 6 13 | jaoi |  |-  ( ( A e. NN0 \/ A = +oo ) -> A e. ( 0 [,] +oo ) ) | 
						
							| 15 | 1 14 | sylbi |  |-  ( A e. NN0* -> A e. ( 0 [,] +oo ) ) |