Metamath Proof Explorer


Theorem xor2

Description: Two ways to express "exclusive or". (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion xor2
|- ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
2 nbi2
 |-  ( -. ( ph <-> ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )
3 1 2 bitri
 |-  ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )