Metamath Proof Explorer


Theorem xorbi12d

Description: Equality property for exclusive disjunction. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses xor12d.1
|- ( ph -> ( ps <-> ch ) )
xor12d.2
|- ( ph -> ( th <-> ta ) )
Assertion xorbi12d
|- ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) )

Proof

Step Hyp Ref Expression
1 xor12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 xor12d.2
 |-  ( ph -> ( th <-> ta ) )
3 1 2 bibi12d
 |-  ( ph -> ( ( ps <-> th ) <-> ( ch <-> ta ) ) )
4 3 notbid
 |-  ( ph -> ( -. ( ps <-> th ) <-> -. ( ch <-> ta ) ) )
5 df-xor
 |-  ( ( ps \/_ th ) <-> -. ( ps <-> th ) )
6 df-xor
 |-  ( ( ch \/_ ta ) <-> -. ( ch <-> ta ) )
7 4 5 6 3bitr4g
 |-  ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) )