Metamath Proof Explorer


Theorem xorbi12i

Description: Equality property for exclusive disjunction. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 21-Apr-2024)

Ref Expression
Hypotheses xorbi12.1
|- ( ph <-> ps )
xorbi12.2
|- ( ch <-> th )
Assertion xorbi12i
|- ( ( ph \/_ ch ) <-> ( ps \/_ th ) )

Proof

Step Hyp Ref Expression
1 xorbi12.1
 |-  ( ph <-> ps )
2 xorbi12.2
 |-  ( ch <-> th )
3 df-xor
 |-  ( ( ph \/_ ch ) <-> -. ( ph <-> ch ) )
4 1 2 bibi12i
 |-  ( ( ph <-> ch ) <-> ( ps <-> th ) )
5 3 4 xchbinx
 |-  ( ( ph \/_ ch ) <-> -. ( ps <-> th ) )
6 df-xor
 |-  ( ( ps \/_ th ) <-> -. ( ps <-> th ) )
7 5 6 bitr4i
 |-  ( ( ph \/_ ch ) <-> ( ps \/_ th ) )