Description: The connector \/_ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 21-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | xorcom | |- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
2 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
|
3 | 1 2 | xchbinx | |- ( ( ph \/_ ps ) <-> -. ( ps <-> ph ) ) |
4 | df-xor | |- ( ( ps \/_ ph ) <-> -. ( ps <-> ph ) ) |
|
5 | 3 4 | bitr4i | |- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) ) |