Description: The connector \/_ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 21-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xorcom | |- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) | |
| 2 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) | |
| 3 | 1 2 | xchbinx | |- ( ( ph \/_ ps ) <-> -. ( ps <-> ph ) ) | 
| 4 | df-xor | |- ( ( ps \/_ ph ) <-> -. ( ps <-> ph ) ) | |
| 5 | 3 4 | bitr4i | |- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) ) |