Metamath Proof Explorer


Theorem xorneg

Description: The connector \/_ is unchanged under negation of both arguments. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion xorneg
|- ( ( -. ph \/_ -. ps ) <-> ( ph \/_ ps ) )

Proof

Step Hyp Ref Expression
1 xorneg1
 |-  ( ( -. ph \/_ -. ps ) <-> -. ( ph \/_ -. ps ) )
2 xorneg2
 |-  ( ( ph \/_ -. ps ) <-> -. ( ph \/_ ps ) )
3 2 con2bii
 |-  ( ( ph \/_ ps ) <-> -. ( ph \/_ -. ps ) )
4 1 3 bitr4i
 |-  ( ( -. ph \/_ -. ps ) <-> ( ph \/_ ps ) )