Metamath Proof Explorer


Theorem xorneg1

Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion xorneg1
|- ( ( -. ph \/_ ps ) <-> -. ( ph \/_ ps ) )

Proof

Step Hyp Ref Expression
1 xorcom
 |-  ( ( -. ph \/_ ps ) <-> ( ps \/_ -. ph ) )
2 xorneg2
 |-  ( ( ps \/_ -. ph ) <-> -. ( ps \/_ ph ) )
3 xorcom
 |-  ( ( ps \/_ ph ) <-> ( ph \/_ ps ) )
4 2 3 xchbinx
 |-  ( ( ps \/_ -. ph ) <-> -. ( ph \/_ ps ) )
5 1 4 bitri
 |-  ( ( -. ph \/_ ps ) <-> -. ( ph \/_ ps ) )