Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xorneg1 | |- ( ( -. ph \/_ ps ) <-> -. ( ph \/_ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorcom | |- ( ( -. ph \/_ ps ) <-> ( ps \/_ -. ph ) ) |
|
2 | xorneg2 | |- ( ( ps \/_ -. ph ) <-> -. ( ps \/_ ph ) ) |
|
3 | xorcom | |- ( ( ps \/_ ph ) <-> ( ph \/_ ps ) ) |
|
4 | 2 3 | xchbinx | |- ( ( ps \/_ -. ph ) <-> -. ( ph \/_ ps ) ) |
5 | 1 4 | bitri | |- ( ( -. ph \/_ ps ) <-> -. ( ph \/_ ps ) ) |