Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xorneg2 | |- ( ( ph \/_ -. ps ) <-> -. ( ph \/_ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor | |- ( ( ph \/_ -. ps ) <-> -. ( ph <-> -. ps ) ) |
|
2 | pm5.18 | |- ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) |
|
3 | xnor | |- ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) ) |
|
4 | 1 2 3 | 3bitr2i | |- ( ( ph \/_ -. ps ) <-> -. ( ph \/_ ps ) ) |