Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xorneg2 | |- ( ( ph \/_ -. ps ) <-> -. ( ph \/_ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor | |- ( ( ph \/_ -. ps ) <-> -. ( ph <-> -. ps ) ) |
|
| 2 | pm5.18 | |- ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) |
|
| 3 | xnor | |- ( ( ph <-> ps ) <-> -. ( ph \/_ ps ) ) |
|
| 4 | 1 2 3 | 3bitr2i | |- ( ( ph \/_ -. ps ) <-> -. ( ph \/_ ps ) ) |