| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xov1plusxeqvd.1 |  |-  ( ph -> X e. CC ) | 
						
							| 2 |  | xov1plusxeqvd.2 |  |-  ( ph -> X =/= -u 1 ) | 
						
							| 3 |  | simpr |  |-  ( ( ph /\ X e. RR+ ) -> X e. RR+ ) | 
						
							| 4 | 3 | rpred |  |-  ( ( ph /\ X e. RR+ ) -> X e. RR ) | 
						
							| 5 |  | 1rp |  |-  1 e. RR+ | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ X e. RR+ ) -> 1 e. RR+ ) | 
						
							| 7 | 6 3 | rpaddcld |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 + X ) e. RR+ ) | 
						
							| 8 | 4 7 | rerpdivcld |  |-  ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) e. RR ) | 
						
							| 9 | 7 | rprecred |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) e. RR ) | 
						
							| 10 |  | 1red |  |-  ( ( ph /\ X e. RR+ ) -> 1 e. RR ) | 
						
							| 11 |  | 0red |  |-  ( ( ph /\ X e. RR+ ) -> 0 e. RR ) | 
						
							| 12 | 10 4 | readdcld |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 + X ) e. RR ) | 
						
							| 13 | 10 3 | ltaddrpd |  |-  ( ( ph /\ X e. RR+ ) -> 1 < ( 1 + X ) ) | 
						
							| 14 |  | recgt1i |  |-  ( ( ( 1 + X ) e. RR /\ 1 < ( 1 + X ) ) -> ( 0 < ( 1 / ( 1 + X ) ) /\ ( 1 / ( 1 + X ) ) < 1 ) ) | 
						
							| 15 | 12 13 14 | syl2anc |  |-  ( ( ph /\ X e. RR+ ) -> ( 0 < ( 1 / ( 1 + X ) ) /\ ( 1 / ( 1 + X ) ) < 1 ) ) | 
						
							| 16 | 15 | simprd |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) < 1 ) | 
						
							| 17 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 18 | 16 17 | breqtrrdi |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 / ( 1 + X ) ) < ( 1 - 0 ) ) | 
						
							| 19 | 9 10 11 18 | ltsub13d |  |-  ( ( ph /\ X e. RR+ ) -> 0 < ( 1 - ( 1 / ( 1 + X ) ) ) ) | 
						
							| 20 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 21 | 20 1 | addcld |  |-  ( ph -> ( 1 + X ) e. CC ) | 
						
							| 22 | 20 | negcld |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 23 | 20 1 22 2 | addneintrd |  |-  ( ph -> ( 1 + X ) =/= ( 1 + -u 1 ) ) | 
						
							| 24 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 25 | 24 | a1i |  |-  ( ph -> ( 1 + -u 1 ) = 0 ) | 
						
							| 26 | 23 25 | neeqtrd |  |-  ( ph -> ( 1 + X ) =/= 0 ) | 
						
							| 27 | 21 20 21 26 | divsubdird |  |-  ( ph -> ( ( ( 1 + X ) - 1 ) / ( 1 + X ) ) = ( ( ( 1 + X ) / ( 1 + X ) ) - ( 1 / ( 1 + X ) ) ) ) | 
						
							| 28 | 20 1 | pncan2d |  |-  ( ph -> ( ( 1 + X ) - 1 ) = X ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ph -> ( ( ( 1 + X ) - 1 ) / ( 1 + X ) ) = ( X / ( 1 + X ) ) ) | 
						
							| 30 | 21 26 | dividd |  |-  ( ph -> ( ( 1 + X ) / ( 1 + X ) ) = 1 ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ph -> ( ( ( 1 + X ) / ( 1 + X ) ) - ( 1 / ( 1 + X ) ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) | 
						
							| 32 | 27 29 31 | 3eqtr3d |  |-  ( ph -> ( X / ( 1 + X ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) = ( 1 - ( 1 / ( 1 + X ) ) ) ) | 
						
							| 34 | 19 33 | breqtrrd |  |-  ( ( ph /\ X e. RR+ ) -> 0 < ( X / ( 1 + X ) ) ) | 
						
							| 35 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 36 | 15 | simpld |  |-  ( ( ph /\ X e. RR+ ) -> 0 < ( 1 / ( 1 + X ) ) ) | 
						
							| 37 | 35 36 | eqbrtrid |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 - 1 ) < ( 1 / ( 1 + X ) ) ) | 
						
							| 38 | 10 10 9 37 | ltsub23d |  |-  ( ( ph /\ X e. RR+ ) -> ( 1 - ( 1 / ( 1 + X ) ) ) < 1 ) | 
						
							| 39 | 33 38 | eqbrtrd |  |-  ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) < 1 ) | 
						
							| 40 |  | 0xr |  |-  0 e. RR* | 
						
							| 41 |  | 1xr |  |-  1 e. RR* | 
						
							| 42 |  | elioo2 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) <-> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) ) | 
						
							| 43 | 40 41 42 | mp2an |  |-  ( ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) <-> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) | 
						
							| 44 | 8 34 39 43 | syl3anbrc |  |-  ( ( ph /\ X e. RR+ ) -> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) | 
						
							| 45 | 28 | adantr |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 + X ) - 1 ) = X ) | 
						
							| 46 | 21 | adantr |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) e. CC ) | 
						
							| 47 | 26 | adantr |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) =/= 0 ) | 
						
							| 48 | 46 47 | recrecd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 / ( 1 + X ) ) ) = ( 1 + X ) ) | 
						
							| 49 | 21 1 21 26 | divsubdird |  |-  ( ph -> ( ( ( 1 + X ) - X ) / ( 1 + X ) ) = ( ( ( 1 + X ) / ( 1 + X ) ) - ( X / ( 1 + X ) ) ) ) | 
						
							| 50 | 20 1 | pncand |  |-  ( ph -> ( ( 1 + X ) - X ) = 1 ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ph -> ( ( ( 1 + X ) - X ) / ( 1 + X ) ) = ( 1 / ( 1 + X ) ) ) | 
						
							| 52 | 30 | oveq1d |  |-  ( ph -> ( ( ( 1 + X ) / ( 1 + X ) ) - ( X / ( 1 + X ) ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) | 
						
							| 53 | 49 51 52 | 3eqtr3d |  |-  ( ph -> ( 1 / ( 1 + X ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) = ( 1 - ( X / ( 1 + X ) ) ) ) | 
						
							| 55 |  | 1red |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 e. RR ) | 
						
							| 56 |  | simpr |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) | 
						
							| 57 | 56 43 | sylib |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( X / ( 1 + X ) ) e. RR /\ 0 < ( X / ( 1 + X ) ) /\ ( X / ( 1 + X ) ) < 1 ) ) | 
						
							| 58 | 57 | simp1d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) e. RR ) | 
						
							| 59 | 55 58 | resubcld |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - ( X / ( 1 + X ) ) ) e. RR ) | 
						
							| 60 | 54 59 | eqeltrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) e. RR ) | 
						
							| 61 |  | 0red |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 e. RR ) | 
						
							| 62 | 57 | simp3d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) < 1 ) | 
						
							| 63 | 62 17 | breqtrrdi |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( X / ( 1 + X ) ) < ( 1 - 0 ) ) | 
						
							| 64 | 58 55 61 63 | ltsub13d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( 1 - ( X / ( 1 + X ) ) ) ) | 
						
							| 65 | 64 54 | breqtrrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( 1 / ( 1 + X ) ) ) | 
						
							| 66 | 60 65 | elrpd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) e. RR+ ) | 
						
							| 67 | 66 | rprecred |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 / ( 1 + X ) ) ) e. RR ) | 
						
							| 68 | 48 67 | eqeltrrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + X ) e. RR ) | 
						
							| 69 | 68 55 | resubcld |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 + X ) - 1 ) e. RR ) | 
						
							| 70 | 45 69 | eqeltrrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> X e. RR ) | 
						
							| 71 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 72 | 57 | simp2d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < ( X / ( 1 + X ) ) ) | 
						
							| 73 | 35 72 | eqbrtrid |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - 1 ) < ( X / ( 1 + X ) ) ) | 
						
							| 74 | 55 55 58 73 | ltsub23d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 - ( X / ( 1 + X ) ) ) < 1 ) | 
						
							| 75 | 54 74 | eqbrtrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 / ( 1 + X ) ) < 1 ) | 
						
							| 76 | 66 | reclt1d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( ( 1 / ( 1 + X ) ) < 1 <-> 1 < ( 1 / ( 1 / ( 1 + X ) ) ) ) ) | 
						
							| 77 | 75 76 | mpbid |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 < ( 1 / ( 1 / ( 1 + X ) ) ) ) | 
						
							| 78 | 77 48 | breqtrd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 1 < ( 1 + X ) ) | 
						
							| 79 | 71 78 | eqbrtrid |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 1 + 0 ) < ( 1 + X ) ) | 
						
							| 80 | 61 70 55 | ltadd2d |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> ( 0 < X <-> ( 1 + 0 ) < ( 1 + X ) ) ) | 
						
							| 81 | 79 80 | mpbird |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> 0 < X ) | 
						
							| 82 | 70 81 | elrpd |  |-  ( ( ph /\ ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) -> X e. RR+ ) | 
						
							| 83 | 44 82 | impbida |  |-  ( ph -> ( X e. RR+ <-> ( X / ( 1 + X ) ) e. ( 0 (,) 1 ) ) ) |