Metamath Proof Explorer


Theorem xp0

Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of Monk1 p. 37. (Contributed by NM, 12-Apr-2004) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion xp0
|- ( A X. (/) ) = (/)

Proof

Step Hyp Ref Expression
1 noel
 |-  -. y e. (/)
2 simprr
 |-  ( ( z = <. x , y >. /\ ( x e. A /\ y e. (/) ) ) -> y e. (/) )
3 1 2 mto
 |-  -. ( z = <. x , y >. /\ ( x e. A /\ y e. (/) ) )
4 3 nex
 |-  -. E. y ( z = <. x , y >. /\ ( x e. A /\ y e. (/) ) )
5 4 nex
 |-  -. E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y e. (/) ) )
6 elxpi
 |-  ( z e. ( A X. (/) ) -> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y e. (/) ) ) )
7 5 6 mto
 |-  -. z e. ( A X. (/) )
8 7 nel0
 |-  ( A X. (/) ) = (/)