| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 2 |
|
anidm |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 3 |
|
neeq1 |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) <-> ( C X. D ) =/= (/) ) ) |
| 4 |
3
|
anbi2d |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( A X. B ) =/= (/) ) <-> ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) ) ) |
| 5 |
2 4
|
bitr3id |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) <-> ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) ) ) |
| 6 |
|
eqimss |
|- ( ( A X. B ) = ( C X. D ) -> ( A X. B ) C_ ( C X. D ) ) |
| 7 |
|
ssxpb |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) <-> ( A C_ C /\ B C_ D ) ) ) |
| 8 |
6 7
|
syl5ibcom |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) -> ( A C_ C /\ B C_ D ) ) ) |
| 9 |
|
eqimss2 |
|- ( ( A X. B ) = ( C X. D ) -> ( C X. D ) C_ ( A X. B ) ) |
| 10 |
|
ssxpb |
|- ( ( C X. D ) =/= (/) -> ( ( C X. D ) C_ ( A X. B ) <-> ( C C_ A /\ D C_ B ) ) ) |
| 11 |
9 10
|
syl5ibcom |
|- ( ( A X. B ) = ( C X. D ) -> ( ( C X. D ) =/= (/) -> ( C C_ A /\ D C_ B ) ) ) |
| 12 |
8 11
|
anim12d |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) -> ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) ) ) |
| 13 |
|
an4 |
|- ( ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) <-> ( ( A C_ C /\ C C_ A ) /\ ( B C_ D /\ D C_ B ) ) ) |
| 14 |
|
eqss |
|- ( A = C <-> ( A C_ C /\ C C_ A ) ) |
| 15 |
|
eqss |
|- ( B = D <-> ( B C_ D /\ D C_ B ) ) |
| 16 |
14 15
|
anbi12i |
|- ( ( A = C /\ B = D ) <-> ( ( A C_ C /\ C C_ A ) /\ ( B C_ D /\ D C_ B ) ) ) |
| 17 |
13 16
|
bitr4i |
|- ( ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) <-> ( A = C /\ B = D ) ) |
| 18 |
12 17
|
imbitrdi |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) -> ( A = C /\ B = D ) ) ) |
| 19 |
5 18
|
sylbid |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) -> ( A = C /\ B = D ) ) ) |
| 20 |
19
|
com12 |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) = ( C X. D ) -> ( A = C /\ B = D ) ) ) |
| 21 |
1 20
|
sylbi |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) = ( C X. D ) -> ( A = C /\ B = D ) ) ) |
| 22 |
|
xpeq12 |
|- ( ( A = C /\ B = D ) -> ( A X. B ) = ( C X. D ) ) |
| 23 |
21 22
|
impbid1 |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) = ( C X. D ) <-> ( A = C /\ B = D ) ) ) |