Step |
Hyp |
Ref |
Expression |
1 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
2 |
|
anidm |
|- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) =/= (/) ) <-> ( A X. B ) =/= (/) ) |
3 |
|
neeq1 |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) <-> ( C X. D ) =/= (/) ) ) |
4 |
3
|
anbi2d |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( A X. B ) =/= (/) ) <-> ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) ) ) |
5 |
2 4
|
bitr3id |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) <-> ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) ) ) |
6 |
|
eqimss |
|- ( ( A X. B ) = ( C X. D ) -> ( A X. B ) C_ ( C X. D ) ) |
7 |
|
ssxpb |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) <-> ( A C_ C /\ B C_ D ) ) ) |
8 |
6 7
|
syl5ibcom |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) -> ( A C_ C /\ B C_ D ) ) ) |
9 |
|
eqimss2 |
|- ( ( A X. B ) = ( C X. D ) -> ( C X. D ) C_ ( A X. B ) ) |
10 |
|
ssxpb |
|- ( ( C X. D ) =/= (/) -> ( ( C X. D ) C_ ( A X. B ) <-> ( C C_ A /\ D C_ B ) ) ) |
11 |
9 10
|
syl5ibcom |
|- ( ( A X. B ) = ( C X. D ) -> ( ( C X. D ) =/= (/) -> ( C C_ A /\ D C_ B ) ) ) |
12 |
8 11
|
anim12d |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) -> ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) ) ) |
13 |
|
an4 |
|- ( ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) <-> ( ( A C_ C /\ C C_ A ) /\ ( B C_ D /\ D C_ B ) ) ) |
14 |
|
eqss |
|- ( A = C <-> ( A C_ C /\ C C_ A ) ) |
15 |
|
eqss |
|- ( B = D <-> ( B C_ D /\ D C_ B ) ) |
16 |
14 15
|
anbi12i |
|- ( ( A = C /\ B = D ) <-> ( ( A C_ C /\ C C_ A ) /\ ( B C_ D /\ D C_ B ) ) ) |
17 |
13 16
|
bitr4i |
|- ( ( ( A C_ C /\ B C_ D ) /\ ( C C_ A /\ D C_ B ) ) <-> ( A = C /\ B = D ) ) |
18 |
12 17
|
syl6ib |
|- ( ( A X. B ) = ( C X. D ) -> ( ( ( A X. B ) =/= (/) /\ ( C X. D ) =/= (/) ) -> ( A = C /\ B = D ) ) ) |
19 |
5 18
|
sylbid |
|- ( ( A X. B ) = ( C X. D ) -> ( ( A X. B ) =/= (/) -> ( A = C /\ B = D ) ) ) |
20 |
19
|
com12 |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) = ( C X. D ) -> ( A = C /\ B = D ) ) ) |
21 |
1 20
|
sylbi |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) = ( C X. D ) -> ( A = C /\ B = D ) ) ) |
22 |
|
xpeq12 |
|- ( ( A = C /\ B = D ) -> ( A X. B ) = ( C X. D ) ) |
23 |
21 22
|
impbid1 |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) = ( C X. D ) <-> ( A = C /\ B = D ) ) ) |