| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2cn |
|- ( X e. CC -> ( X + 1 ) e. CC ) |
| 2 |
1
|
halfcld |
|- ( X e. CC -> ( ( X + 1 ) / 2 ) e. CC ) |
| 3 |
|
peano2cnm |
|- ( ( ( X + 1 ) / 2 ) e. CC -> ( ( ( X + 1 ) / 2 ) - 1 ) e. CC ) |
| 4 |
2 3
|
syl |
|- ( X e. CC -> ( ( ( X + 1 ) / 2 ) - 1 ) e. CC ) |
| 5 |
|
peano2cnm |
|- ( X e. CC -> ( X - 1 ) e. CC ) |
| 6 |
5
|
halfcld |
|- ( X e. CC -> ( ( X - 1 ) / 2 ) e. CC ) |
| 7 |
|
2cnd |
|- ( X e. CC -> 2 e. CC ) |
| 8 |
|
2ne0 |
|- 2 =/= 0 |
| 9 |
8
|
a1i |
|- ( X e. CC -> 2 =/= 0 ) |
| 10 |
|
1cnd |
|- ( X e. CC -> 1 e. CC ) |
| 11 |
2 10 7
|
subdird |
|- ( X e. CC -> ( ( ( ( X + 1 ) / 2 ) - 1 ) x. 2 ) = ( ( ( ( X + 1 ) / 2 ) x. 2 ) - ( 1 x. 2 ) ) ) |
| 12 |
1 7 9
|
divcan1d |
|- ( X e. CC -> ( ( ( X + 1 ) / 2 ) x. 2 ) = ( X + 1 ) ) |
| 13 |
7
|
mullidd |
|- ( X e. CC -> ( 1 x. 2 ) = 2 ) |
| 14 |
12 13
|
oveq12d |
|- ( X e. CC -> ( ( ( ( X + 1 ) / 2 ) x. 2 ) - ( 1 x. 2 ) ) = ( ( X + 1 ) - 2 ) ) |
| 15 |
5 7 9
|
divcan1d |
|- ( X e. CC -> ( ( ( X - 1 ) / 2 ) x. 2 ) = ( X - 1 ) ) |
| 16 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 17 |
16
|
a1i |
|- ( X e. CC -> ( 2 - 1 ) = 1 ) |
| 18 |
17
|
oveq2d |
|- ( X e. CC -> ( X - ( 2 - 1 ) ) = ( X - 1 ) ) |
| 19 |
|
id |
|- ( X e. CC -> X e. CC ) |
| 20 |
19 7 10
|
subsub3d |
|- ( X e. CC -> ( X - ( 2 - 1 ) ) = ( ( X + 1 ) - 2 ) ) |
| 21 |
15 18 20
|
3eqtr2rd |
|- ( X e. CC -> ( ( X + 1 ) - 2 ) = ( ( ( X - 1 ) / 2 ) x. 2 ) ) |
| 22 |
11 14 21
|
3eqtrd |
|- ( X e. CC -> ( ( ( ( X + 1 ) / 2 ) - 1 ) x. 2 ) = ( ( ( X - 1 ) / 2 ) x. 2 ) ) |
| 23 |
4 6 7 9 22
|
mulcan2ad |
|- ( X e. CC -> ( ( ( X + 1 ) / 2 ) - 1 ) = ( ( X - 1 ) / 2 ) ) |