Metamath Proof Explorer


Theorem xp2dju

Description: Two times a cardinal number. Exercise 4.56(g) of Mendelson p. 258. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xp2dju
|- ( 2o X. A ) = ( A |_| A )

Proof

Step Hyp Ref Expression
1 xpundir
 |-  ( ( { (/) } u. { 1o } ) X. A ) = ( ( { (/) } X. A ) u. ( { 1o } X. A ) )
2 df2o3
 |-  2o = { (/) , 1o }
3 df-pr
 |-  { (/) , 1o } = ( { (/) } u. { 1o } )
4 2 3 eqtri
 |-  2o = ( { (/) } u. { 1o } )
5 4 xpeq1i
 |-  ( 2o X. A ) = ( ( { (/) } u. { 1o } ) X. A )
6 df-dju
 |-  ( A |_| A ) = ( ( { (/) } X. A ) u. ( { 1o } X. A ) )
7 1 5 6 3eqtr4i
 |-  ( 2o X. A ) = ( A |_| A )