Step |
Hyp |
Ref |
Expression |
1 |
|
elxp |
|- ( A e. ( B X. C ) <-> E. b E. c ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) ) |
2 |
|
vex |
|- b e. _V |
3 |
|
vex |
|- c e. _V |
4 |
2 3
|
op2ndd |
|- ( A = <. b , c >. -> ( 2nd ` A ) = c ) |
5 |
4
|
eleq1d |
|- ( A = <. b , c >. -> ( ( 2nd ` A ) e. C <-> c e. C ) ) |
6 |
5
|
biimpar |
|- ( ( A = <. b , c >. /\ c e. C ) -> ( 2nd ` A ) e. C ) |
7 |
6
|
adantrl |
|- ( ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) -> ( 2nd ` A ) e. C ) |
8 |
7
|
exlimivv |
|- ( E. b E. c ( A = <. b , c >. /\ ( b e. B /\ c e. C ) ) -> ( 2nd ` A ) e. C ) |
9 |
1 8
|
sylbi |
|- ( A e. ( B X. C ) -> ( 2nd ` A ) e. C ) |