| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xp11 |
|- ( ( C =/= (/) /\ A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> ( C = C /\ A = B ) ) ) |
| 2 |
|
eqid |
|- C = C |
| 3 |
2
|
biantrur |
|- ( A = B <-> ( C = C /\ A = B ) ) |
| 4 |
1 3
|
bitr4di |
|- ( ( C =/= (/) /\ A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) |
| 5 |
|
nne |
|- ( -. A =/= (/) <-> A = (/) ) |
| 6 |
|
simpr |
|- ( ( C =/= (/) /\ A = (/) ) -> A = (/) ) |
| 7 |
|
xpeq2 |
|- ( A = (/) -> ( C X. A ) = ( C X. (/) ) ) |
| 8 |
|
xp0 |
|- ( C X. (/) ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( A = (/) -> ( C X. A ) = (/) ) |
| 10 |
9
|
eqeq1d |
|- ( A = (/) -> ( ( C X. A ) = ( C X. B ) <-> (/) = ( C X. B ) ) ) |
| 11 |
|
eqcom |
|- ( (/) = ( C X. B ) <-> ( C X. B ) = (/) ) |
| 12 |
10 11
|
bitrdi |
|- ( A = (/) -> ( ( C X. A ) = ( C X. B ) <-> ( C X. B ) = (/) ) ) |
| 13 |
12
|
adantl |
|- ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) <-> ( C X. B ) = (/) ) ) |
| 14 |
|
df-ne |
|- ( C =/= (/) <-> -. C = (/) ) |
| 15 |
|
xpeq0 |
|- ( ( C X. B ) = (/) <-> ( C = (/) \/ B = (/) ) ) |
| 16 |
|
orel1 |
|- ( -. C = (/) -> ( ( C = (/) \/ B = (/) ) -> B = (/) ) ) |
| 17 |
15 16
|
biimtrid |
|- ( -. C = (/) -> ( ( C X. B ) = (/) -> B = (/) ) ) |
| 18 |
14 17
|
sylbi |
|- ( C =/= (/) -> ( ( C X. B ) = (/) -> B = (/) ) ) |
| 19 |
18
|
adantr |
|- ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. B ) = (/) -> B = (/) ) ) |
| 20 |
13 19
|
sylbid |
|- ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) -> B = (/) ) ) |
| 21 |
|
eqtr3 |
|- ( ( A = (/) /\ B = (/) ) -> A = B ) |
| 22 |
6 20 21
|
syl6an |
|- ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) -> A = B ) ) |
| 23 |
5 22
|
sylan2b |
|- ( ( C =/= (/) /\ -. A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) -> A = B ) ) |
| 24 |
|
xpeq2 |
|- ( A = B -> ( C X. A ) = ( C X. B ) ) |
| 25 |
23 24
|
impbid1 |
|- ( ( C =/= (/) /\ -. A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) |
| 26 |
4 25
|
pm2.61dan |
|- ( C =/= (/) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) |