| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							co01 | 
							 |-  ( (/) o. (/) ) = (/)  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							 |-  ( A = (/) -> A = (/) )  | 
						
						
							| 3 | 
							
								2
							 | 
							sqxpeqd | 
							 |-  ( A = (/) -> ( A X. A ) = ( (/) X. (/) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							0xp | 
							 |-  ( (/) X. (/) ) = (/)  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtrdi | 
							 |-  ( A = (/) -> ( A X. A ) = (/) )  | 
						
						
							| 6 | 
							
								5 5
							 | 
							coeq12d | 
							 |-  ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( (/) o. (/) ) )  | 
						
						
							| 7 | 
							
								1 6 5
							 | 
							3eqtr4a | 
							 |-  ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xpco | 
							 |-  ( A =/= (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							pm2.61ine | 
							 |-  ( ( A X. A ) o. ( A X. A ) ) = ( A X. A )  |