Step |
Hyp |
Ref |
Expression |
1 |
|
co01 |
|- ( (/) o. (/) ) = (/) |
2 |
|
id |
|- ( A = (/) -> A = (/) ) |
3 |
2
|
sqxpeqd |
|- ( A = (/) -> ( A X. A ) = ( (/) X. (/) ) ) |
4 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
5 |
3 4
|
eqtrdi |
|- ( A = (/) -> ( A X. A ) = (/) ) |
6 |
5 5
|
coeq12d |
|- ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( (/) o. (/) ) ) |
7 |
1 6 5
|
3eqtr4a |
|- ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) ) |
8 |
|
xpco |
|- ( A =/= (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) ) |
9 |
7 8
|
pm2.61ine |
|- ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) |