| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcomf1o.1 |
|- F = ( x e. ( A X. B ) |-> U. `' { x } ) |
| 2 |
|
xpcomco.1 |
|- G = ( y e. B , z e. A |-> C ) |
| 3 |
1
|
xpcomf1o |
|- F : ( A X. B ) -1-1-onto-> ( B X. A ) |
| 4 |
|
f1ofun |
|- ( F : ( A X. B ) -1-1-onto-> ( B X. A ) -> Fun F ) |
| 5 |
|
funbrfv2b |
|- ( Fun F -> ( u F w <-> ( u e. dom F /\ ( F ` u ) = w ) ) ) |
| 6 |
3 4 5
|
mp2b |
|- ( u F w <-> ( u e. dom F /\ ( F ` u ) = w ) ) |
| 7 |
|
ancom |
|- ( ( u e. dom F /\ ( F ` u ) = w ) <-> ( ( F ` u ) = w /\ u e. dom F ) ) |
| 8 |
|
eqcom |
|- ( ( F ` u ) = w <-> w = ( F ` u ) ) |
| 9 |
|
f1odm |
|- ( F : ( A X. B ) -1-1-onto-> ( B X. A ) -> dom F = ( A X. B ) ) |
| 10 |
3 9
|
ax-mp |
|- dom F = ( A X. B ) |
| 11 |
10
|
eleq2i |
|- ( u e. dom F <-> u e. ( A X. B ) ) |
| 12 |
8 11
|
anbi12i |
|- ( ( ( F ` u ) = w /\ u e. dom F ) <-> ( w = ( F ` u ) /\ u e. ( A X. B ) ) ) |
| 13 |
6 7 12
|
3bitri |
|- ( u F w <-> ( w = ( F ` u ) /\ u e. ( A X. B ) ) ) |
| 14 |
13
|
anbi1i |
|- ( ( u F w /\ w G v ) <-> ( ( w = ( F ` u ) /\ u e. ( A X. B ) ) /\ w G v ) ) |
| 15 |
|
anass |
|- ( ( ( w = ( F ` u ) /\ u e. ( A X. B ) ) /\ w G v ) <-> ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
| 16 |
14 15
|
bitri |
|- ( ( u F w /\ w G v ) <-> ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
| 17 |
16
|
exbii |
|- ( E. w ( u F w /\ w G v ) <-> E. w ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
| 18 |
|
fvex |
|- ( F ` u ) e. _V |
| 19 |
|
breq1 |
|- ( w = ( F ` u ) -> ( w G v <-> ( F ` u ) G v ) ) |
| 20 |
19
|
anbi2d |
|- ( w = ( F ` u ) -> ( ( u e. ( A X. B ) /\ w G v ) <-> ( u e. ( A X. B ) /\ ( F ` u ) G v ) ) ) |
| 21 |
18 20
|
ceqsexv |
|- ( E. w ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) <-> ( u e. ( A X. B ) /\ ( F ` u ) G v ) ) |
| 22 |
|
elxp |
|- ( u e. ( A X. B ) <-> E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) ) |
| 23 |
22
|
anbi1i |
|- ( ( u e. ( A X. B ) /\ ( F ` u ) G v ) <-> ( E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 24 |
|
nfcv |
|- F/_ z ( F ` u ) |
| 25 |
|
nfmpo2 |
|- F/_ z ( y e. B , z e. A |-> C ) |
| 26 |
2 25
|
nfcxfr |
|- F/_ z G |
| 27 |
|
nfcv |
|- F/_ z v |
| 28 |
24 26 27
|
nfbr |
|- F/ z ( F ` u ) G v |
| 29 |
28
|
19.41 |
|- ( E. z ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 30 |
|
nfcv |
|- F/_ y ( F ` u ) |
| 31 |
|
nfmpo1 |
|- F/_ y ( y e. B , z e. A |-> C ) |
| 32 |
2 31
|
nfcxfr |
|- F/_ y G |
| 33 |
|
nfcv |
|- F/_ y v |
| 34 |
30 32 33
|
nfbr |
|- F/ y ( F ` u ) G v |
| 35 |
34
|
19.41 |
|- ( E. y ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 36 |
|
anass |
|- ( ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) ) ) |
| 37 |
|
fveq2 |
|- ( u = <. z , y >. -> ( F ` u ) = ( F ` <. z , y >. ) ) |
| 38 |
|
opelxpi |
|- ( ( z e. A /\ y e. B ) -> <. z , y >. e. ( A X. B ) ) |
| 39 |
|
sneq |
|- ( x = <. z , y >. -> { x } = { <. z , y >. } ) |
| 40 |
39
|
cnveqd |
|- ( x = <. z , y >. -> `' { x } = `' { <. z , y >. } ) |
| 41 |
40
|
unieqd |
|- ( x = <. z , y >. -> U. `' { x } = U. `' { <. z , y >. } ) |
| 42 |
|
opswap |
|- U. `' { <. z , y >. } = <. y , z >. |
| 43 |
41 42
|
eqtrdi |
|- ( x = <. z , y >. -> U. `' { x } = <. y , z >. ) |
| 44 |
|
opex |
|- <. y , z >. e. _V |
| 45 |
43 1 44
|
fvmpt |
|- ( <. z , y >. e. ( A X. B ) -> ( F ` <. z , y >. ) = <. y , z >. ) |
| 46 |
38 45
|
syl |
|- ( ( z e. A /\ y e. B ) -> ( F ` <. z , y >. ) = <. y , z >. ) |
| 47 |
37 46
|
sylan9eq |
|- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( F ` u ) = <. y , z >. ) |
| 48 |
47
|
breq1d |
|- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( ( F ` u ) G v <-> <. y , z >. G v ) ) |
| 49 |
|
df-br |
|- ( <. y , z >. G v <-> <. <. y , z >. , v >. e. G ) |
| 50 |
|
df-mpo |
|- ( y e. B , z e. A |-> C ) = { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } |
| 51 |
2 50
|
eqtri |
|- G = { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } |
| 52 |
51
|
eleq2i |
|- ( <. <. y , z >. , v >. e. G <-> <. <. y , z >. , v >. e. { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } ) |
| 53 |
|
oprabidw |
|- ( <. <. y , z >. , v >. e. { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } <-> ( ( y e. B /\ z e. A ) /\ v = C ) ) |
| 54 |
49 52 53
|
3bitri |
|- ( <. y , z >. G v <-> ( ( y e. B /\ z e. A ) /\ v = C ) ) |
| 55 |
54
|
baib |
|- ( ( y e. B /\ z e. A ) -> ( <. y , z >. G v <-> v = C ) ) |
| 56 |
55
|
ancoms |
|- ( ( z e. A /\ y e. B ) -> ( <. y , z >. G v <-> v = C ) ) |
| 57 |
56
|
adantl |
|- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( <. y , z >. G v <-> v = C ) ) |
| 58 |
48 57
|
bitrd |
|- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( ( F ` u ) G v <-> v = C ) ) |
| 59 |
58
|
pm5.32da |
|- ( u = <. z , y >. -> ( ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) <-> ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 60 |
59
|
pm5.32i |
|- ( ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 61 |
36 60
|
bitri |
|- ( ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 62 |
61
|
exbii |
|- ( E. y ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 63 |
35 62
|
bitr3i |
|- ( ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 64 |
63
|
exbii |
|- ( E. z ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 65 |
23 29 64
|
3bitr2i |
|- ( ( u e. ( A X. B ) /\ ( F ` u ) G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 66 |
17 21 65
|
3bitri |
|- ( E. w ( u F w /\ w G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 67 |
66
|
opabbii |
|- { <. u , v >. | E. w ( u F w /\ w G v ) } = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
| 68 |
|
df-co |
|- ( G o. F ) = { <. u , v >. | E. w ( u F w /\ w G v ) } |
| 69 |
|
df-mpo |
|- ( z e. A , y e. B |-> C ) = { <. <. z , y >. , v >. | ( ( z e. A /\ y e. B ) /\ v = C ) } |
| 70 |
|
dfoprab2 |
|- { <. <. z , y >. , v >. | ( ( z e. A /\ y e. B ) /\ v = C ) } = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
| 71 |
69 70
|
eqtri |
|- ( z e. A , y e. B |-> C ) = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
| 72 |
67 68 71
|
3eqtr4i |
|- ( G o. F ) = ( z e. A , y e. B |-> C ) |