Metamath Proof Explorer


Theorem xpcomen

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpcomen.1
|- A e. _V
xpcomen.2
|- B e. _V
Assertion xpcomen
|- ( A X. B ) ~~ ( B X. A )

Proof

Step Hyp Ref Expression
1 xpcomen.1
 |-  A e. _V
2 xpcomen.2
 |-  B e. _V
3 1 2 xpex
 |-  ( A X. B ) e. _V
4 2 1 xpex
 |-  ( B X. A ) e. _V
5 eqid
 |-  ( x e. ( A X. B ) |-> U. `' { x } ) = ( x e. ( A X. B ) |-> U. `' { x } )
6 5 xpcomf1o
 |-  ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> ( B X. A )
7 f1oen2g
 |-  ( ( ( A X. B ) e. _V /\ ( B X. A ) e. _V /\ ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> ( B X. A ) ) -> ( A X. B ) ~~ ( B X. A ) )
8 3 4 6 7 mp3an
 |-  ( A X. B ) ~~ ( B X. A )