Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 5-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpcomen.1 | |- A e. _V |
|
xpcomen.2 | |- B e. _V |
||
Assertion | xpcomen | |- ( A X. B ) ~~ ( B X. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomen.1 | |- A e. _V |
|
2 | xpcomen.2 | |- B e. _V |
|
3 | 1 2 | xpex | |- ( A X. B ) e. _V |
4 | 2 1 | xpex | |- ( B X. A ) e. _V |
5 | eqid | |- ( x e. ( A X. B ) |-> U. `' { x } ) = ( x e. ( A X. B ) |-> U. `' { x } ) |
|
6 | 5 | xpcomf1o | |- ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> ( B X. A ) |
7 | f1oen2g | |- ( ( ( A X. B ) e. _V /\ ( B X. A ) e. _V /\ ( x e. ( A X. B ) |-> U. `' { x } ) : ( A X. B ) -1-1-onto-> ( B X. A ) ) -> ( A X. B ) ~~ ( B X. A ) ) |
|
8 | 3 4 6 7 | mp3an | |- ( A X. B ) ~~ ( B X. A ) |