Metamath Proof Explorer


Theorem xpdisj1

Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004)

Ref Expression
Assertion xpdisj1
|- ( ( A i^i B ) = (/) -> ( ( A X. C ) i^i ( B X. D ) ) = (/) )

Proof

Step Hyp Ref Expression
1 xpeq1
 |-  ( ( A i^i B ) = (/) -> ( ( A i^i B ) X. ( C i^i D ) ) = ( (/) X. ( C i^i D ) ) )
2 inxp
 |-  ( ( A X. C ) i^i ( B X. D ) ) = ( ( A i^i B ) X. ( C i^i D ) )
3 0xp
 |-  ( (/) X. ( C i^i D ) ) = (/)
4 3 eqcomi
 |-  (/) = ( (/) X. ( C i^i D ) )
5 1 2 4 3eqtr4g
 |-  ( ( A i^i B ) = (/) -> ( ( A X. C ) i^i ( B X. D ) ) = (/) )