Metamath Proof Explorer


Theorem xpdisj2

Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004)

Ref Expression
Assertion xpdisj2
|- ( ( A i^i B ) = (/) -> ( ( C X. A ) i^i ( D X. B ) ) = (/) )

Proof

Step Hyp Ref Expression
1 xpeq2
 |-  ( ( A i^i B ) = (/) -> ( ( C i^i D ) X. ( A i^i B ) ) = ( ( C i^i D ) X. (/) ) )
2 inxp
 |-  ( ( C X. A ) i^i ( D X. B ) ) = ( ( C i^i D ) X. ( A i^i B ) )
3 xp0
 |-  ( ( C i^i D ) X. (/) ) = (/)
4 3 eqcomi
 |-  (/) = ( ( C i^i D ) X. (/) )
5 1 2 4 3eqtr4g
 |-  ( ( A i^i B ) = (/) -> ( ( C X. A ) i^i ( D X. B ) ) = (/) )