| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enrefg |  |-  ( A e. V -> A ~~ A ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> A ~~ A ) | 
						
							| 3 |  | 0ex |  |-  (/) e. _V | 
						
							| 4 |  | simp2 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> B e. W ) | 
						
							| 5 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 6 | 3 4 5 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { (/) } X. B ) ~~ B ) | 
						
							| 7 | 6 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> B ~~ ( { (/) } X. B ) ) | 
						
							| 8 |  | xpen |  |-  ( ( A ~~ A /\ B ~~ ( { (/) } X. B ) ) -> ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) ) | 
						
							| 9 | 2 7 8 | syl2anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) ) | 
						
							| 10 |  | 1on |  |-  1o e. On | 
						
							| 11 |  | simp3 |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> C e. X ) | 
						
							| 12 |  | xpsnen2g |  |-  ( ( 1o e. On /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( { 1o } X. C ) ~~ C ) | 
						
							| 14 | 13 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> C ~~ ( { 1o } X. C ) ) | 
						
							| 15 |  | xpen |  |-  ( ( A ~~ A /\ C ~~ ( { 1o } X. C ) ) -> ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) ) | 
						
							| 16 | 2 14 15 | syl2anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) ) | 
						
							| 17 |  | xp01disjl |  |-  ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) | 
						
							| 18 | 17 | xpeq2i |  |-  ( A X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( A X. (/) ) | 
						
							| 19 |  | xpindi |  |-  ( A X. ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) ) = ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) | 
						
							| 20 |  | xp0 |  |-  ( A X. (/) ) = (/) | 
						
							| 21 | 18 19 20 | 3eqtr3i |  |-  ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) | 
						
							| 22 | 21 | a1i |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) ) | 
						
							| 23 |  | djuenun |  |-  ( ( ( A X. B ) ~~ ( A X. ( { (/) } X. B ) ) /\ ( A X. C ) ~~ ( A X. ( { 1o } X. C ) ) /\ ( ( A X. ( { (/) } X. B ) ) i^i ( A X. ( { 1o } X. C ) ) ) = (/) ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) ) | 
						
							| 24 | 9 16 22 23 | syl3anc |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) ) | 
						
							| 25 |  | df-dju |  |-  ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) | 
						
							| 26 | 25 | xpeq2i |  |-  ( A X. ( B |_| C ) ) = ( A X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) | 
						
							| 27 |  | xpundi |  |-  ( A X. ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) = ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) | 
						
							| 28 | 26 27 | eqtri |  |-  ( A X. ( B |_| C ) ) = ( ( A X. ( { (/) } X. B ) ) u. ( A X. ( { 1o } X. C ) ) ) | 
						
							| 29 | 24 28 | breqtrrdi |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( ( A X. B ) |_| ( A X. C ) ) ~~ ( A X. ( B |_| C ) ) ) | 
						
							| 30 | 29 | ensymd |  |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A X. ( B |_| C ) ) ~~ ( ( A X. B ) |_| ( A X. C ) ) ) |