| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldom |
|- Rel ~<_ |
| 2 |
1
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
| 3 |
|
xpcomeng |
|- ( ( A e. _V /\ C e. V ) -> ( A X. C ) ~~ ( C X. A ) ) |
| 4 |
3
|
ancoms |
|- ( ( C e. V /\ A e. _V ) -> ( A X. C ) ~~ ( C X. A ) ) |
| 5 |
2 4
|
sylan2 |
|- ( ( C e. V /\ A ~<_ B ) -> ( A X. C ) ~~ ( C X. A ) ) |
| 6 |
|
xpdom2g |
|- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( C X. B ) ) |
| 7 |
1
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
| 8 |
|
xpcomeng |
|- ( ( C e. V /\ B e. _V ) -> ( C X. B ) ~~ ( B X. C ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( C e. V /\ A ~<_ B ) -> ( C X. B ) ~~ ( B X. C ) ) |
| 10 |
|
domentr |
|- ( ( ( C X. A ) ~<_ ( C X. B ) /\ ( C X. B ) ~~ ( B X. C ) ) -> ( C X. A ) ~<_ ( B X. C ) ) |
| 11 |
6 9 10
|
syl2anc |
|- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( B X. C ) ) |
| 12 |
|
endomtr |
|- ( ( ( A X. C ) ~~ ( C X. A ) /\ ( C X. A ) ~<_ ( B X. C ) ) -> ( A X. C ) ~<_ ( B X. C ) ) |
| 13 |
5 11 12
|
syl2anc |
|- ( ( C e. V /\ A ~<_ B ) -> ( A X. C ) ~<_ ( B X. C ) ) |