Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq1 |
|- ( x = C -> ( x X. A ) = ( C X. A ) ) |
2 |
|
xpeq1 |
|- ( x = C -> ( x X. B ) = ( C X. B ) ) |
3 |
1 2
|
breq12d |
|- ( x = C -> ( ( x X. A ) ~<_ ( x X. B ) <-> ( C X. A ) ~<_ ( C X. B ) ) ) |
4 |
3
|
imbi2d |
|- ( x = C -> ( ( A ~<_ B -> ( x X. A ) ~<_ ( x X. B ) ) <-> ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) ) ) |
5 |
|
vex |
|- x e. _V |
6 |
5
|
xpdom2 |
|- ( A ~<_ B -> ( x X. A ) ~<_ ( x X. B ) ) |
7 |
4 6
|
vtoclg |
|- ( C e. V -> ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) ) |
8 |
7
|
imp |
|- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( C X. B ) ) |